EFFECT OF ACUTE RENAL FAILURE ON KIDNEY AMIDINOTRANSFERASE ACTIVITY

Jelenka Nikolic*, Dušan Sokolović* and Boris Djindjic**

L-Arginine-glycine amidinotransferase (EC 2.1.4.1) catalyzes the transfer of an amidino group from arginine to glycine to form guanidinoacetate, precursor in creatine synthesis. The kidneys are major site of the creatine synthesis and primary target organs for mercury toxicity. In evaluation of molecular mechanisms of mercury chloride intoxication relating to creatine metabolism we have investigated the enzyme activity in kidney tissue after mercury chloride administration. Acute renal failure was induced by i.p administration of mercury chloride in a dose of 3 mg/kg to male Spraque Dawley rats weighing about 200 g. The results of our study indicate an acute renal failure 24 hours after mercury chloride administration. Urea and creatinine levels in blood plasma were significantly elevated compared to control group (p<0.001). Amidinotransferase activity in kidney tissue was depressed, while, in plasma of intoxicated rats activity of enzyme was increased (p<0.001). The obtained results indicate that mercury chloride has strong nephrotoxic effect. Depressed amidinotransferase activity and decreased production of guanidinoacetate, initial product in creatine synthesis, may be implicated in neurotoxicity, cardiotoxicity and muscle damage in mercury intoxication, because creatine and its phosphorylated form creatine phosphate play an important role in the energy metabolism. Acta Medica Mediana 2004; 43(2):5-8.

Key words: mercury chloride, kidney, amidinotransferase, urea, creatinine, creatine

Department of Biochemistry, Faculty of Medicine, Nis* Department of Pathological Physiology, Faculty of Medicine, Nis**

Correspondence to: Jelenka Nikolic
Department of Biochemistry, Faculty of Medicine
81 Dr Zoran Djindjic street, 18000 Nis, Serbia and Montenegro
Phone: 018/326-712, e-mail: nikan@bankerinter.net

Introduction

The kidneys are the target for numerous toxicants including environmental chemical substances. Humans and animals are exposed to numerous chemical forms of mercury: elemental mercury vapor (Hg°), inorganic mercurous (Hg+) and mercuric (Hg2+) compounds, and organic mercuric compounds (R-Hg+ or R-Hg-R). All forms of mercury have toxic effects (1). Many inorganic compounds of mercury are used in agriculture (pesticides, fungicides), medicine (as a desinfectants, dental amalgam fillings, vaccines) industrial manufacture (fluorescent lamps, batteries, thermostats, thermometers).

Mercury chloride (HgCl2) is an organic mercury compound with ionic mercury. Intoxication with mercury occurs through environmental, occupational or accidental exposure. Fish and fungicides are the main source of methyl mercury. Babies are exposed to ethyl mercury through vaccination and adults through dental amalgam filings (2,3).

Acute exposure to mercury may include damage of the kidney, gastrointestinal, nervous and cardiovascular system. Chronic exposure leads to neurodegenerative disorders like Alzheimer's diseases, Parkinson's diseases, autism, immunomodulation, dermatitis, reproductive failure, chronic renal failure, cardiovascular and liver damage and carcinogenesis. Manifestations of toxicity include: headache, tremor, impaired coordination, abdominal cramps, diarrhea, dermatitis, polyneuropathy, proteinuria, and hepatic dysfunction (4,5,6,7,8,9).

Mercury is accumulated and expresses toxicity primary to the kidney (9,10). Acute renal failure (ARF) is a dramatical clinical syndrome. It develops after acute exposure to high doses of mercury chloride and is frequently fatal. Toxic effects caused by mercury itself and / or by numerous secondary reactions in the body, reflect many biochemical parameters in blood and kidney tissue.

Kidney has an important role in metabolism of arginine. Among other roles in the kidney, arginine is also substrate for the synthesis of guanidinoacetate, precursor for creatine synthesis. This reaction is the first and limiting reaction in creatine synthesis catalyzed by amidinotransferase (Transamidinase, L-arginine-glycine transamidinase, EC 2.1.4.1). Amidotransferase (AT) is predominantly located in proximal tubules of the kidneys. Guanidinoacetate in the second reaction, mainly in the liver, was methylated by the activity of guanidinoacetate methyltransferase which transfers methyl group from S-adenosyl-methionine to guanidinoacetate forming creatine. Creatine undergoes
Effect of acute renal failure on kidney amidinotransferase activity
Jelenka Nikolic, Dušan Sokolovic and Boris Dindjic

Creatine phosphate by creatine kinase activity in muscle, heart, brain and tissues which possess high creatine kinase activity. The role of creatine phosphate in these tissues is to provide a high energy phosphate which is important for ATP synthesis or ATP utilization. In the state of constant functional activity, creatine and creatine phosphate form creatinine by nonenzymatic cyclization. Creatinine, as terminal product, was excreted by the kidney in urine (11,12) (Figure 1).

Proximal tubules are the most vulnerable part of the nephron to toxic effect of mercury (13,14).

The aim
The mechanisms by which mercury chloride induces renal injury are not completely understood. Therefore, we studied renal arginine metabolism relating to creatine metabolism in rat model nephrotoxicity induced by mercury chloride. We analyzed the levels of urea, creatinine and transamidinase activity as possible biochemical markers of kidney tissue.

Materials and methods
Male Spraque Dawley rats weighing about 200 g. were used in the experiment. Acute renal failure was induced by i.p administration of mercury chloride in a dose of 3 mg/kg. Control group of animals was treated with equal volume of saline. Urea and creatinine levels in blood plasma were measured 24 hours after the induction of acute uremic syndrome by standard biochemical analysis. Transamidinase activity in kidney tissue and blood plasma were measured according to the method Van Pilsum et al. (15) with minor modification. Enzyme activity was measured by determination of the amounts of formed ornithine by ninhydrine color reaction and expressed in units on mg of tissue proteins. Tissue level of proteins was determined by the method of Lowry et al. (16).

Results
Data on renal function were shown in Table 1. Plasma levels of urea and creatinine were significantly increased in HgCl₂ intoxicated rats compared to the control group (p < 0.001). These animals show higher levels of plasma transamidinase activity compared to control group (p < 0.001) (Figure 2).

<table>
<thead>
<tr>
<th>Investigated groups</th>
<th>Urea (mmol/L)</th>
<th>Creatinine (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7.9 ±0.5</td>
<td>40.34 ± 8.3</td>
</tr>
<tr>
<td>HgCl₂</td>
<td>22.7 ± 1.6</td>
<td>288128.4***</td>
</tr>
</tbody>
</table>

*p<0.001

Kidney tissue level of transaminase was significantly decreased in animals treated with mercury chloride (p<0.001) (Figure 3).

Discussion
Creatinine and urea are used still today as clinical makers for renal function. Significant elevation of urea and creatinine levels in blood plasma in rats treated with mercury chloride indicate acute renal insufficiency. Factors contributing to the sensitivity of the kidney to mercury include large blood flow, the presence of xenobiotic transporters and metabolizing enzymes (10,17). Decrease in glomerular filtration rate, tubular collapse, and marked structural and functional tubular abnormalities were reported from Conger and Falk (18).

Decrease transaminase in kidney tissue may be a result of enzyme inhibition and/or cell necrosis. Inhi-
petition of enzyme may be caused by mercury chloride and hyperornithinemia. Hyperornithinemia results in enzyme inhibition because ornithine is strong competitive inhibitor of amidinotransferase (19).

Renal accumulation of mercury is caused by the transformation of mercury to mercuric ion. Interactions with sulfhydryl groups in molecules of albumin, metallothionein, glutathione, and cysteine have been implicated in mechanisms involved in the proximal tubular uptake, accumulation, transport, and toxicity of mercu-

ric ions (20,21,22,23). Amidinotransferase is thiol enzy-

me with Cys407 in active site residue (24). Binding of HgCl₂ with SH group of enzyme leads to inhibition of enzyme activity (25). Transamidinase is predominantly located in proximal tubules of the kidneys where HgCl₂ induce severe damage. Necrosis of proximal tu-

bular cells leads to release of enzyme in blood. Eleva-

tion of plasma enzyme was also seen in various kidney diseases (26).

One of pathogenetic mechanisms of acute renal failure is rhabdomyolysis, elevation of serum concentra-

tion of aldolase and creatine phosphokinase, and the presence of pigment granular casts and myoglobin in the urine (27). Low level of amidinotransferase activity in kidney tissue may be due to high levels of blood and kidney creatine content which is released as a result of catabolic effect of adrenal steroids on muscle mass (28). Creatine inhibits ovn synthesis by inhibition of amidinotransferase and decrease formation of guanidi-

notransferase. Creatine affects enzyme activity by changing its rate of synthesis at a pretranslational step and represents an example of end-product repression. Feedback repression of amidinotransferase by creatine is expressed in kidney and pancreas (11,12,29,30,31).

Creatine movement through cell membranes re-

quires creatine transporters which are Na⁺,Cl⁻ depen-

dent. Creatine transporters contain a cysteine residue, cysteine 144, in the third transmembrane domain of the creatine transporter. It is located close to a substrate-binding site (32). Due to a well-known high affinity of mercury to SH-groups there is a possibility that binding of mercury with creatine transporters alters moving cre-

atine through cell membranes. Therefore, recent re-

searches point disorders of creatine metabolism on the level of creatine synthesis and creatine transport (33, 34, 35).

The main function of creatine is in ATP produc-

tion through its involvement in phosphocreatine energy system through phosphocreatinine shuttle. In the re-

versible reaction catalyzed by creatine kinase, creatine and ATP form phosphocreatine and adenosine diphos-

phate (ADP). This energy shuttle uses phosphocreatine to carry energy between sites of production and sites of utilization (36, 37).

Conclusion

In acute renal failure induced by mercury chloride kidney tissue level of transamidinase activity was decreased. Results of our study indicate on important mechanism in nephrotoxicity of mercury chloride, which could be involved in developing other organ and system failure. Decrease of creatine and creatine phosphatase in brain, muscle and heart, as a consequence of transamidinase inhibition, has influence on energetic metabolism in these tissues and could lead to neurotoxicity, cardiotoxicity or muscle damage. Results of our study indicate important role of creatine in mercury intoxication and possible beneficial effect of creatine supplementation in mercury chloride intoxication.

References

Effect of acute renal failure on kidney amidinotransferase activity

Jelenka Nikolic, Dušan Sokolovic and Boris Dindjic

