Review article ■

Immune Response in Infections Caused by Helminthes

Dragan Zdravković, Jovana Kostić, Jelena Radović, Aleksandar Kostić, Milena Potić Floranović, Ana Ristić Petrović, Aleksandra Ignjatović, Aleksandar Tasić, Nataša Miladinović Tasić, Suzana Otašević

1Public Health Institute Niš, Serbia
2University of Niš, Faculty of Medicine, Serbia

SUMMARY

The first line of defence in parasitic infection is the innate immune system. On the other hand, adaptive immune system possesses numerous mechanisms of humoral and cellular immunity.

Cellular immunity in a helminth infection is characterised by Th2 immune response. Considering the fact that the aim of a parasite is not to kill its host, the majority of parasites are highly adapted to the life inside the host, and successfully avoid or limit its defences. A special significance of the parasite as a potential pathogen is its possibility to escape immunity. Numerous helminths are releasing different substances that are acting as lymphocyte suppressors and macrophage inactivators and they are capable of destroying antibodies. They have a possibility of camouflage, sequestration and surface shell peeling with the aim to avoid immune response. Latest research in the field of immunology has revealed the significance of CD40 co-stimulating protein of antigen presenting cells in the immune response to parasitic infection.

Immune response in the course of parasitic infestation is important in pathogenesis of helminthioses.

Key words: helminth, immunity, parasitic infection

Corresponding author:
Jovana Kostić •
phone: 064 144 55 86 •
e-mail: dr.jovana.kostic@gmail.com •
INTRODUCTION

Helmintoses are human infections caused by cestodes-tape-worms (Taenia spp., Hymenolepis spp., Echinococcus spp,...), trematodes-flukes (Fasciola hepatica, Dicrocelium spp,...) and nematodes-roundworms (Ascaris spp., Trichuris spp., Strongyloides spp., Enterobius spp., Trichinella spp., Toxocara spp., Dirofilaria spp,...) that can be parasites of the gut, blood, lymphatic vessels and different organs and tissues of the human body (1).

Humans can be infected by ingestion of infective forms of the worm, by active penetration of infective larvae into the skin or transmission can happen by intermediate insect host. In nature, many helminthes have a very complex life cycles. Consequently, immune response of the host organism is a complex process, too. Immunity includes both innate and adaptive response. The innate immunity is the first line of defense (1).

Protection mechanisms of nonspecific immunity to helminthes are still not fully understood. However, it is know that they include, as well as in infections caused by other infective agents, physical and chemical barriers in the host organism (2). Humoral responses are important for elimination of extracellular parasites that can live inside blood vessels, other body fluids or in the gut. Cellular immunity in helmintic infection is characterized by Th2 immune response.

Besides the activation of both adaptive and innate immune responses, and controlling of parasite multiplication, in some helmintic infections human immunity can generate the establishment of “concomitant immunity”. In this circumstances, the defense mechanisms do not eliminate the initial helmintic infection, however, they set and allow resistance of the host to infection with a new worm of the same species. For example, immunocompetition between two dirofilariae (as suggested by laboratory infections), results in the block of D. immitis development, when infection with this species follows that with D. repens (3).

Immunity in helmintoses

The first line of defence against helmint is followed by the activation of eosinophils. Eosinophils contain granules, with the substances that are toxic for a parasite (reactive oxygen metabolites, allicic proteins, eosiophylc neurotoxin, leucotriens, growth factors, enzymes), that are capable to damage helmint’s cuticula and destroy it (2).

Antigen presenting cells (APC) play an important role in the innate immune response, because they are capable of recognizing numerous molecular patterns presented on pathogens, called pathogen-associated molecular patterns (PAMPs). In the recent years, it has been known that APC can recognize these PAMPs through Toll-like Receptors (TLRs) and NOD-like receptors (NLRs). These receptors induce signaling through the pathways responsible for inflammatory cytokines production. TLRs are type 1 transmembran proteins that are receptors with a primary role as sensors in the innate immunity response. They can direct the response of the innate immunity. TLRs are present at the surface of many cells in different combinations. For example, at the surface of dendritic cell (DC), macrofage, neutrophil, endothelial cell and lumphocyte. This specific but distinct pattern of expression is a special mechanism that secures different responses to different types of pathogens. The binding of TLRs triggers a series of signals that eventually lead to nuclear factor-xB (NF-xB) activation causing the inflammation. TLRs posses a common conserved domain (TIR) located intracellulary. Once this domain is activated, it starts a signal that travels over five different adaptator molecules resulting in activation of NF-xB – dependent pathway and interferon regulatory factor (4). After the interaction with the specific ligand, TLRs recruit adaptator protein to his TLR domain. NF-xB is a significant regulator of transcription and it is consisted of five subunits p50, p65, p52, RelB and c-Rel. Two of these enable transport to the nucleus where NF- xB binds with the DNA. Once it is inside the nucleus, NF- xB regulates the production of more than 150 genes responsible for coding cytokines, Ag receptors, apoptosis, and host defense. Both sensory and effecter functions of TLRs are involved during immune response to pathogens. The production of proinflamatory cytokines and the increase of co-stimulatory potential of APC is probably the host immediate response to the presence of pathogen. Recognition of concrete pathogen by TLR makes these reactions possible (5). TLRs can react in various ways of recognizing the presence of pathogen. Every TLR possesses a unique and specific role in creating such immune response. Helminths can both activate (to a small degree) and negatively regulate TLRs (to a much larger degree). However, prolonged exposure to helminthes (and their antigens) creates the situation where reaction of innate immunity cells can be delayed. This negative regulation by TLRs results in decreased production of proinflamatory cytokines whose role is to protect and prevent pathological processes. The compromised expression and function of TLRs can have negative consequences in the response to other pathogens, such as bacteria and viruses. The interaction between tissue helminthes and innate immunity is important to explore, because it can reveal the role of TLRs and provide new areas of study for therapy and vaccine development that may involve alterations in TLRs expression and function (6).

Eosinophilic response in helmintic infections is determined by the immune response of the host, but also by distribution, migration and the helmint maturatio. The level of epsinophilia mainly corelates to the intensity of tissue infestation with larval or adult forms of parasite. In chronic forms of infection local eosinophilia can be present. The absence of eosinophilia occurs when helmint is bounded inside the tissue (intact echnococ cyst, granuloma with differente forms of Dirofilaria...
spp. intraluminal presence of *Ascaris* spp. in the intestine) (7-11). Intermittent licking of the fluid from echinococcosis cyst can lead to the transient eosinophilia associated with hypersensitive reaction type 1 (anaphylactic reaction). Prolonged hypereosinophilia is present in strongyloidosis, filariasis, and in children with *Toxocara canis* infection (8-10, 12-14).

On the other hand, numerous mechanisms of humoral and cellular immunity are involved in the defence of a host organism (2). Although specific antibodies are mechanisms of humoral immunity, they are not always efficient in the defence. The presence of these antibodies has a diagnostic value, and often correlates with the activity of the parasite in the human body (7-15). Serodiagnosis of helminthic infections is extremely important in the case of echinococcosis, trichinosis, toxocariasis, infections that have extremely high seroprevalence. Although immunodiagnostic tests can only determine the reactivity of the host to the presence of helminth antigens, the use of sensitive and specific commercial kits as a noninvasive method, especially in case of tissue helminthoses, is recommended.

Particularly significant throughout helminthic infection of the digestive system is IgE production. These antibodies induce mastocyte degranulation that can cause numerous changes in the intestine physiology and structure of the intestine epithelium. This leads to the production of large amounts of fluid, electrolytes and mucous secretion, smooth muscle contraction, vascular and epithelial permeability increase, as well as eosinophilia and mastocyte recruitment (16). These changes result in elimination of adult or larval form of helminth from the gastrointestinal tract before the parasite binds to the mucosa or reaches the tissue (17). At the surface of mucosa, IgA helps in neutralisation of metabolic enzymes produced by parasite, disrupting the way that parasite feeds. By releasing microbicidal substances, even phagocytes can contribute to the defence from helminths (18).

Cellular immunity in helminthic infection is characterised by Th2 immune response. CD4+ TH2 lymphocytes are producing IL-4, IL-5 and IL-10 (18-19). IL-4 stimulates the production of IgE antibodies that can bind to the surface of helminth and helps eosinophils to recognize it and destroy it. These antibodies can bind to the mastocytes too, activating them to produce cytokines and induce inflammation. On the other hand, IL-5 and IL-13 react by stimulating maturation and activation of eosinophils (19). T-regulatory cells can produce IL-10 that has an inflammatory effect and it is possible to have a role in a Th2-like response, too. IL-4 and IL-13 can activate macrophages in alternative way of activation (18-20). Milbourne and Howell proved that *F. hepatica* secreting the substance similar to IL-5 that is probably responsible for the local and systemic eosinophilia during fascioliasis (5). Nitric oxide (NO), that is toxic for a helminth, is released by macrophages activated through IFN-γ and TNF-α. This mechanism is best described in infection with *Shistosoma* spp. and *Fasciola* spp. (21).

The latest research in the field of immunology reveals the significance of CD40 in the immune response to parasitic infection. CD40 is a co-stimulating protein expressed on antigen presenting cells, and its role is to activate these cells (22, 23). Its counter receptor CD154 (CD40 ligand) is expressed on CD4+T cells (24). The interaction between CD40 and CD 154 controls many aspects of the cellular and humoral immunity (25).

CD40-CD154 signalling in the course of helminthic infection has a role not only in type 1 cytokine response, but also in IFN-γ-independent autophagy as well as in stimulating protective type 2 cytokine response. The latest studies have announced the possibility that CD154 polymorphism determines susceptibility to helminthic infection, and may, in future, be used as a therapy (26).

Mechanisms of host immunity avoidance by some helminthes

Despite its immunogenity, helminths can survive inside the host for a long period of time. They have developed several pathways to avoid immune response. It has long been known that helminth is a multicellular organism that is in advantage over the immune system of the host, due to its size and motility (4, 27, 28). All helminths are releasing great amount of antigenic material. This material inside the human body can literally confuse the immune system or deplete immune potential locally (14).

In addition, numerous helminths release different substances that act as lymphocyte suppressor and macrophage inactivator and can destroy antibodies. Cestodes can prolong their life inside the host by producing anticomplementary factors. In that way they protect its cuticula from lyses (4).

Other example is *Fasciola* spp. (*F. spp.*) escaping the immune response in different ways: *F. gigantica* produces suprooxide dismutasis and Glutation-S- transferas that can neutralise superoxide toxic radicals. *F. hepatica* releases catapsin L-proteasiss that binds to IgE and IgG antibodies involved in antibody-dependant cell-mediated cytotoxicity (ADCC). *Schistosoma* spp. produces the so-called „Schistosomes apoptosis factor“ that induces apoptosis of CD4+ T lymphocytes using the Fas receptor (5). Worms of this genera can absorb Fc fragment of immunoglobuline and MHC molecules of the host. That is how they can camouflage themselves and hide its surface Ag.

Filarie contain serum albumins-like antigens in its cuticule, acting as a mask for hiding from the antibodies (8-10, 17).

Avoiding of specific immnuny reactions can be through sekkestration. *Echinococcus* spp., *Taenia solium* and *Trichinella spiralis* inhabits the isolated parts of the human body that are unreachable to the immune sys-
Immune response is very important in pathogenesis of parasitic disease. In some parasitoses, the immune response has a key role in a tissue damage. It is very difficult to distinguish the tissue damage that is a consequence of a parasite presence from the damage made by agents secreted during processes of the host immune response (4). The procedures with the aim of diagnosis tissue parasitoses include histopathological analysis. Benefits of biopsy and histopathological analysis are certainly in the detection and identification of parasites and therefore these methods represent the "golden standard". However, the problems and disadvantages of these procedures include the possibility of morphological destruction of the parasite that can be damaged due to host immune reactivity. Recently, the use of the molecular methods for the diagnosis of biopsy specimens has allowed the detection and identification of parasites in case of the presence of minimal amounts of helminths, as well as the presence of significant damage of the parasite (15, 30).

It is also known that immune response to helminthes posses some of the same signals and mediators as the human body damage repair system (31).

In the course of helmintic infection, Th2-like response is present. Th2 cells, macrophages, eosinophiles and fibroblasts agglomerate and they form granuloma. Even though the aim of granuloma is to limit the dissemination of parasite, chronic stimulation of the immune system leads to organ damage. In some infections, the circulating immune complexes can be formed, and later accumulate in the small blood vessels, which results in the damage (20). The pathogenesis of Schistosoma mansoni infection is the best example of interaction between the direct tissue damage, made by the presence of the parasite itself, and the indirect tissue damage, which is the consequence of the immune system activity. Granuloma, created as the product of hypersensitivity to the presence of Schistosoma spp. eggs inside the liver of the host, induces the obstruction of the liver small blood vessels, which leads to severe fibrosis, and in some cases liver failure (5).

Inflammatory reactions, caused by the immune system activity, can appear in the skin, liver, lungs, small intestine, central nervous system and eye. Systemic disorders such as eosinophilia, oedema, and joint pain reflect a local allergic reaction to the parasite. Pathological changes such as villous atrophy that can appear due to inflammation in the early stage of Strongyloides spp. and Trichinella spp. infection can disrupt mucosa permeability in the small intestine and shorten a time of protein absorption lading to a severe protein loss. These indirect tissue changes contribute to the chronicity of helmintic infection. The fact that many helmintic parasites live for long can explain the irreversibility of inflammatory changes that can lead to functional changes. The example of these irreversible changes is liver ducts hyperplasia in chronic parasitic liver infection, massive fibrosis in chronic schistosomiasis and skin atrophy in onchocercosis (3, 29, 32).

CONCLUSION

Considering the fact that the aim of a parasite is not to kill its host, the majority of parasites are highly adapted to the life inside the host, and can successfully avoid or limit its defences. A special significance of the helminthes is its possibility to escape immunity. That is why the immune response to the parasite is not efficient enough to eliminate the parasite, allowing the development of chronic infection.

Funding

This work was financially supported by the Serbian Ministry of Education, Science and Technological Development, grant No 31060 and grant No 175034.

References

2. Kranjić Zec I et al. Medical protozoology. In: Susceptibility and immunity of the host during parasitic infection. Libri Medicorum, Faculty of Medicine, University of Belgrade, 2006; 18-25.

http://dx.doi.org/10.1016/j.coi.2007.07.002
PMid:17702561 PMCid:2000338

IMUNOLOŠKI ODGOVOR KOD INFEKCIJA IZAZVANIH HELMINTIMA

Dragan Zdravković¹, Jovana Kostić², Jelena Radović², Aleksandar Kostić², Milena Potić Floranović², Ana Ristić Petrović², Aleksandra Ignjatović², Aleksandar Tasić¹, Nataša Miladinović Tasić¹,², Suzana Otašević¹,²

¹Institut za javno zdravlje Niš, Srbija
²Univerzitet u Nišu, Medicinski fakultet, Srbija

Sažetak

Pored urođene otpornosti, u borbi protiv parazita, organizam domaćina raspolaže i specifičnim humoralnim i celularnim mehanizmima zaštite.

Celularna imunska reaktivnost u toku helmintoza uspostavlja se preko Th2 imunskog odgovora. Imajući u vidu činjenicu da cilj parazita nije da ubije svog domaćina, većina parazita je visoko adaptirana na život unutar domaćina i uspešno izbegava ili ograničava njegove odbrombene sposobnosti. Helminti, paraziti čoveka, produkuju održene supstance koje deluju kao supresori limfocita i inaktivatori makrofaga i sposobni su da izvrše destrukciju produkovanih antitela. Takođe, helminti mogu maskiranjem, sekvencioniranjem i gubitkom eksponiranih antigena kutikule da izbegnu mehanizme odbrane nosioca. Najnovija istraživanja na polju imunologije otkrivaju značaj CD40 ko-stimulirajućeg proteina antigen prezentujućih celija u okviru imunološkog odgovora u toku parazitske infekcije.

Pored zaštitne uloge, imunološki odgovor u toku parazitske infekcije značajno utiče i na patogenezu helmintoza.

Ključne reči: helmint, imunološki odgovor, parazitska infekcija