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S U M M A R Y  

 
Introduction/Aim. Herbs have been a vital renewable source of medicine throughout human history as a 
large proportion of the global population still depends on them for their health benefits. The increasing 
popularity of herbal supplements has raised an obvious concern about the overall safety and potential 
interaction with other drugs in situ. The intent was to spur future research on herb-drug interactions as 
well as the mechanisms of interaction to understand the consequences of such interactions. 
Methodology. The review was conducted by a systematic search of relevant literature using the databases 
of Google Scholar, Science Direct, Mendeley, Scopus, and PubMed. Publications written in English were 
used. 
Results. Many herbal products are reported to exhibit herb-drug interaction with known orthodox 
medicines. The inhibition-induction mechanism triggers chain reactions which often result in reduced 
drug bioavailability, toxicities, or undesirable side effects. Some herbal phytoconstituents reportedly bind 
CYP2C9, CYP2C19, CYP2E1, and CYP3A1 among numerous others temporarily or irreversibly. 
Conclusion. The study was concluded by reiterating the imperativeness to routinely and regularly inform 
both physicians and patients of the inherent dangers such as reduced efficacy and increased toxicities 
associated with herb-drug interactions (HDI). Herb users should be regularly advised on the appropriate 
use of herbal supplements to avoid the risk of adverse drug interactions during co-administrations or in 
combination therapies. As both synergistic and antagonistic effects could be observed in HDI, further 
preclinical and clinical empirical studies are required to underscore the mechanism and extent of HDI. 
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I N T R O D U C T I O N  
 

The upsurge in the global application of com-
plementary and alternative medicines which heavily 
relies on herbal preparations calls for urgent atten-
tion with respect to interactions of the chemical con-
stituent of a plant with prescription medicines (1). 
Herb-drug interactions (HDIs) are interactions that 
occur between herbal product/ dietary supplement 
and a conventional drug when administered togeth-
er. This interaction could involve either pharmacoki-
netic or pharmacodynamic mechanisms. While phar-
macokinetic interaction refers to the effect of a herbal 
drug on the absorption, distribution, metabolism 
and excretion of a conventional drug, pharmaco-
dynamic interactions are associated with the phar-
macological activity of the drug and may affect an 
enzyme, receptor site, or organ system.  Thus, the 
outcomes could be additive, synergistic, or antago-
nism.  

Pharmacokinetics (PK) is simply defined as 
the action of the body on the drug while exerting its 
action in the body. It is the quantitative study of 
drug absorption, distribution, metabolism, and ex-
cretion (2). It does not study only healthy individuals 
but also includes research on PK variations under a 
variety of physiological (e.g. pregnancy) and disease 
conditions. It also covers the underlying mecha-
nisms, potential drug-drug interactions (DDIs), 
dietary-drug interactions, HDIs, and strategies (dose 
adjustment) to achieve precise dosage regimens for 
better therapeutic outcomes (3). Thus, PK study is 
always required to determine the relations and un-
derlying mechanisms of drug actions and its clinical 
benefits and is important for lead identification and 
optimization in drug discovery (4).  

Despite the advancement in drug metabolism 
and pharmacokinetics (DMPK) research, it is largely 
due to the advancement in bio-analytical chemistry, 
pharmacology, molecular biology, medicinal chem-
istry, biochemistry, and computer science. Research 
involving herb-drug interaction seems not to have 
fully utilized these technologies. This is largely due 
to complex constituents of herbs, study designs (e.g. 
dose and treatment periods) and assay systems (e.g. 
in vitro, or in vivo preclinical studies or clinical stu-
dies). These are the reasons for the inconsistent pre-
dictions and/or results associated with HDIs studies 
(5 - 7). 

Our previous studies on combinations of a 
medicinal plant and a natural product with a ver-

satile pharmaceutical excipient revealed that bio-
availability and efficacy can be altered through inter-
action (8 - 10). This impelled us to carry out a review 
on herb and drug interaction. 

This review provides a comprehensive over-
view of current trends in pharmacokinetics and 
further discusses the trends in PK-based HDIs and 
its underlying mechanisms as well as the clinical re-
levance in Nigeria.  

 
L I T E R A T U R E  
S E A R C H / M E T H O D O L O G Y  
 
Literature search from 2003 up to 2023 was 

undertaken using a range of scientific databases 
(Google Scholar, PubMed, Science Direct, Mendeley, 
and Scopus) using the keywords: pharmacokinetics, 
herb-drug interaction, mechanism of Pharmacoki-
netic action, clinical relevance, and experimental 
models. 

 
F A C T O R S  D E T E R M I N I N G   
P H A R M A C O K I N E T I C S - B A S E D  
H D I s  
 
Absorption is the movement of a drug from its 

site of administration into the blood from where it is 
distributed to its site of action and permeates 
through different body barriers until the drug is 
inactivated and finally excreted from the body. 
Alterations in the absorption, distribution, meta-
bolism and excretion of a drug affect its pharmacoki-
netic profile (8). Hence, drug metabolizing enzymes 
(DMEs) and transporters (e.g. P-glycoprotein) are 
key determinants in pharmacokinetics. Drug trans-
porters are usually present in the intestine where 
they are involved in drug absorption, an important 
parameter of pharmacokinetics (9). Drug-metabo-
lizing enzymes are largely present in the liver where 
most drug metabolism occurs. Most of the herbal 
drug interactions are metabolism-based and me-
diated by the cytochrome P450 system that is largely 
involved in phase 1 reaction (10, 11). Also, trans-
criptional and posttranscriptional factors (e.g. nu-
clear receptors, noncoding RNA) are important 
determinants of PK. Studies exploring these de-
terminants can explain the mechanism of HDIs, im-
prove the success of drug development, and prevent 
drug recall post market. However, herbal products 
and other natural products are not usually consi-
dered during the process of drug development either 
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at the preclinical or clinical stages of development. 
Nonetheless, some significant clinical HDIs were 
reported (12). 

 
D R U G  M E T A B O L I Z I N G  E N Z Y M E S  
M O D U L A T I O N  O F  
P H A R M A C O K I N E T I C S  
 
Drug metabolizing enzymes mediate the 

metabolism of exogenous (drugs, herbs, chemicals) 
and endogenous (e.g. bilirubin) substances. Most 
drugs become inactive mainly through metabolic 
transformation, producing more polar metabolites 
that are readily excreted. Hence, DMEs play a crucial 
role in the mechanism mediating pharmacokinetic-
based herb-drug interaction. For instance, induction 
of DMEs may lead to a decrease in drug concen-
tration in the body and consequent efficacy reduct-
ion. The metabolism of drugs/herbs by the meta-
bolizing enzymes may be classified into phase I, 
phase II, and phase III reactions (13). The phase I 
reactions usually involve enzymes such as cyto-
chrome P450 oxidases (CYPs) that introduce reactive 
or polar groups into drugs/herbs. This is usually 
followed by phase II reactions; the enzymes involved 
in this reaction are transferases (e.g. uridine glu-
curonyl transferase, UGTs). Lastly, in phase III 
reactions, the product of phase III reactions may be 
further processed, before it is recognized and 
pumped out of the cells by the efflux transporter 
(13). There is a better understanding of the roles 
played by DMEs in the modulation of PK. These 
include identifications of more isoforms of meta-
bolizing enzymes and their selective substrates, in-
ducers, and inhibitors. The roles of other non-CYPS 

oxidative enzymes (e.g. flavin monooxygenases) and 
conjugative enzymes (e.g. carboxylases) are now 
being considered in PK studies (14). 

Herbal products also undergo phase I and 
phase II reactions to be excreted from the body. If a 
herbal product is co-administered with a drug, it 
may inhibit or induce the activity or the expression 
of specific DMEs that could be the same enzymes 
responsible for the metabolism of that drug, leading 
to herb-drug interactions (15). 

 
P H A S E  1  D R U G- M E T A B O L I Z I N G  
E N Z Y M E  C R I T I C A L  F O R  P K  
 
Phase 1 enzymes may be grouped as CYPs 

and non-CYPs oxidative enzymes. CYPs are respon-
sible for many drug metabolisms, mainly located in 
the inner membrane of mitochondria or the smooth 
endoplasmic reticulum of the liver cells (16). How-
ever, some CYPs are found outside the liver cells 
(e.g. CYP1A1); they can also be found in the cells of 
the lungs, kidneys as well as in the intestine. They 
are classified based on their amino acid sequence 
homology into families, subfamilies, and isoforms 
(14). When two CYPs have about 40% similarity in 
their amino acid sequence, then they belong to the 
same family. The families are numbered, such as 
CYP1, CYP2, and CYP3 etc. Subfamilies are identi-
fied based on 55% similarities in sequence homo-
logy; it is usually represented with a capital letter, 
for example CYP1A, CYP1B, CYP2A, etc (17). Lastly, 
individual ‘isoforms’ that originated from a single 
are represented by the number which usually fol-
lows the letters that represent subfamilies, such as 

 
 

Table1. Endogenous and exogenous substrates of CYPs 
 

Family Number of subfamilies Endogenous/Exogeneous substrates 
CYP1A 2 Aflatoxin, estrogen, melatonin, and naproxen 
CYP2 13 Arachidonic acid, coumarin, diazepam, halothane, and 

paracetamol 
CYP3A 2 Erythromycin, nifedipine, and testosterone 
UGT1A 8 Bilirubin, eicosanoids, imipramine, and p-Nitrophenol  
UGT2A 3 Hydeoxycholic acid, tobacco carcinogens 
UGT2B 7 Carvedilol, efavirenz, diclofenac, and bile acids 
UGT3 1 N-acetylglucosamine 
UGT8 1 Bile acid 

        CYPs- cytochrome P450. Adapted from Liu et al. (2) 
 



R e v i e w  a r t i c l e  

Acta facultatis medicae Naissensis 2024; 41(4):294-309 212 

CYP1A1, CY1A2 and others (17 - 19). A total of 57 
human CYP genes in 18 families have been identified 
(13, 2, 20). CYP1 to CYP4 families oxidized several 
exogenous and endogenous chemicals (Table 1), 
while CYP5 and higher families majorly metabolize 
endogenous substrate in a highly substrate-specific 
manner (20). 

The understanding of differences in mecha-
nism of metabolism-mediated DDI/HDIs involving 
the metabolizing enzyme activities is very critical for 
improving clinical use of drugs either with herbs or 
another drug. Recent studies have shown several 
herbs and chemical entities as inhibitors/inducers of 
CYPs. For example, Styrax liquidus (resin of 
Liquidambar orientalis Mill) inhibits CYP3A (21). The 
complexity of phyto-constituents of herbs is the 
reason for the differences seen in the effects of the 
herbal remedy on the regulation of multiple enzy-
mes. For instance, Sophora flavescens inhibit CYP2B6, 
CYP2C8, CYP2C9 and CYP3A activities (22). Other 
regulatory factors such as nuclear factor (Pregnane X 
receptor) can alter the expression of CYPs. Tumor 
suppressor p53 is known to regulate CYP2B10 di-
rectly (23). 

It is important to understand how drug/herb 
exposure could alter drug metabolism mechanism 
underlying many HDIs. For example, the area under 
the curve (AUC) of glibenclamide was markedly 
increased when co-administered with Tinospora 
cordifolia extracts (24). This was due to a significant 
inhibition of CYP2C9, the enzyme involved in the 
metabolism of this drug. 

The extrahepatic CYPs also have an important 
role in drug metabolism. There is evidence that 
C1A1 and CYP1B1 expressed in the lungs have a role 
in the metabolism of dolutegravir (25). Likewise, 
CYPs found in the intestine and kidneys are im-
plicated in the metabolism of some herbs (26). More 
studies have shown the role of renal enzymes in 
herbs metabolism. Precisely, gentamicin-induced 

renal toxicity was shown to be alleviated by Moringa 
oleifera seed oil (27). 

Lastly, CYP polymorphisms also play a critical 
role in PK. Recent data are now available on the re-
lative content of individual CYPs isoforms. Total 
CYP concentrations are significantly varied between 
the Chinese and Caucasian populations, and the 
metabolic capabilities of CYPs in Chinese liver 
microsomes was significantly lower (˂ 50%) in the 
clearance of substrates for CYP1A2, CYP2C9, 
CYP2C19, and CYP2E1 than those of Caucasian po-
pulations (28).  

 
N O N - C Y P s  O X I D A T I V E  E N Z Y M E S  
 
The non-CYP oxidative enzymes also contri-

bute immensely to drug metabolism. Hence, they are 
also important for consideration during drug de-
velopment and PK study. They can be broadly clas-
sified based on the type of reactions they catalyze, 
they can be oxidative, hydrolytic, reductive and con-
jugative. Examples of non-CYP oxidative enzymes 
are: flavin-containing monooxygenases (FMOs), mo-
noamine oxidases (MAOs), hydrolase (e.g. carbo-
xyesterases),  aldehyde oxidase (AO) and others (29, 
30). 

CES (carboxylesterase)-mediated reactions 
have been overlooked; it belongs to the family of 
α/β- hydrolase and about five of them have been 
identified in humans (CES1, CES2, CES3, CES5and 
CES6). They are ubiquitous but the human liver pre-
dominantly contains CES1 with smaller quantities of 
CES2, while the intestine almost only contains CES1 
(30). Substrates and inhibitors have been identified 
for some of these enzymes (Table 2). Recently, sci-
entists found that corylifolinin, a flavonoid found in 
Fructus psoraleae, inhibits carboxylesterase-1 (CES1), 
while bavachinin, found in the same plant species, 
inhibits carboxyesterae-2 (CES2) (31, 32).  

 
Table 2. Examples of different drugs that are substrates and modulators of Carboxylesterases 

 

Family Substrates Inhibitors Inducers 
CES1 Clopidogrel, enalapril, 

oseltamivir 
Curcumin,  
caffeic acid 

Trinitrobenzene, sulfonate, 
sulforaphane 

CES2 Flutamide, irinotecan Loperamide, Telmisartan Urethane dimethacrylate 

CES- carboxylesterase. Adapted from Wang et al. (161) 
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FMOs are involved in the metabolism of ethio-
namide, a second-line anti-tuberculosis drug (33). 2-
mercaptobenzimidazole, indole-3-carbinol, and 
methimazole are known inhibitors of FMOs (34). 
Another non-CYPs oxidative enzyme is human mo-
noamine oxidase (hMAO). There are two different 
isoforms, namely, hMAO-A and hMAO-B. These 
enzymes are involved in the metabolism of 
monoamines. Herniarin, a phytochemical obtained 
from Artemsia dracunculus were identified as inhi-
bitors of hMAO (35). 

 
I M P O R T A N C E  O F  P H A S E  I I  
E N Z Y M E S  I N  P K  
 
Phase II enzymes (glucuronyl transferases, 

glutathione –S-transferases and N-acetyltransferases,  
etc.) play a major role in exogenous and endogenous 
substance metabolism (36). Uridine diphospho-
glucuronosyl transferases (UGTs) are the most 
important enzymes in phase 2 metabolisms and 
glucuronidation is the most common reaction of 
phase II metabolisms (37). UGTs are present in the 
smooth endoplasmic reticulum, especially in the 
liver; they are classified into four gene families 
(UGT1, UGT2, UGT3 and UGT8). UGT1 and 2 play a 
major role in xenobiotics glucuronidation, while 

UGT4 and 8 roles are minimal (38). Chemicals either 
natural or synthetic with functional groups such as –
OH, -COOH, -SH2 and –NH2 are generally suitable 
substrates for UGTs (39). Several substrates and 
inhibitors have been identified for different isoforms 
of UGTs (Table 3). Diosmetin, a naturally occurring 
flavonoid (mainly extracted from Galium verum) is 
metabolized by the UGTs (2). Also, UGT1A3 is 
involved in the glucuronidation of alpinetin, while 
metizolam (a depressant) is metabolized by UGT1A4 
(40, 41). UGTs are diverse and have weak specificity 
for their substrates, hence, herb-drug interactions 
easily occur with UGTs (2). Highly selective and 
specific inhibitors/substrates have been identified in 
herbs and other sources; for example, resveratrol 
activates the expression of UGT1A8 and emodin 
inhibits UGT2B7 activity in various reports (42, 43). 

Polymorphism in the genes encoding UGTs 
plays a critical role in the regulation of its contents 
and activity. Consequently, the variation could 
either be normal or abnormal metabolic activities 
with resultant alterations in the PK parameters (2, 
44). Most of the findings on gene polymorphism are 
extrapolated for use in African populations, even 
when variant frequencies can differ significantly in 
different populations (45). The UGT1A4*3 genetic 
polymorphism is associated with low posaconazole  

 
 

Table3. Exogeneous and endogeneous chemicals metabolized by UGTs. Reproduced (47) 
 

Family  Enzymes Endogeneous/exogeneous substrate 
UGT1A UGT1A1 

UGT1A3 
UGT1A4 
UGT1A6 
UGT1A7 
UGT1A8 
UGT1A9 
UGT1A10 

Estradiol, Bilirubin, axitinib 
Bile acid, NSAIDS 
Eicosanoids, imipramine 
Serotonin, 1- Napthol 4- nitrophenol 
Icaritin  
Fatty acids, opiods, coumarins 
Steroids, Niflumic acid 
Estrogens, dopamine, nitrosamine 

UGT2A 
UGT2B 

UGT2A2/3 
UGT2B4 
UGT2B7 
UGT2B10 
UGT2B11 
UGT2B15 
UGT2B17 
UGT2B28 

Hyodeoxycholic acid, tobacco carcinogens 
Arachidonic acid, Naftopidil 
Sex steroids, zidovudine, codeine 
Eicosanoids, amitryptiline 
Hydroxlestrogens  
Sex steroid hormones, lorazepam 
Sex steroid hormones, flavonoids 
Sex steroid hormones  

UGT3 UGT3 N- acetylglucosamine 
UGT8 UGT8A1 Bile acids 
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plasma concentrations in patients with hematolo-
gical malignancies (46). 

Other phase II enzymes such as glutathione S-
transferase (GST) and sulfonyl transferase (SULT) 
are also important in mediating phase II reactions. 
Although these enzymes are being overlooked, 
recent studies have shown that they play an im-
portant role in metabolism-based HDIs and drugs 
PK (44). GST catalyzed the binding of glutathione to 
many electrophilic compounds in phase 2 reactions. 
About seven classes of GST isoforms have been 
identified in humans - alpha, zeta, theta, mu, pi, 
sigma, and omega (47). Endogenous substrates such 
as heme are metabolized by these enzymes.  Xeno-
biotics substances such as busulfan are metabolized 
by GST (48). 

 
R E G U L A T O R S  O F  D R U G  
M E T A B O L I Z I N G  E N Z Y M E S  
( D M E s )  
 
Drug metabolizing enzyme expressions are 

regulated by human nuclear receptors. They are 
transcription factors that regulate target genes in-
volved in drug metabolism (2). The transcription fac-
tors (peroxisome proliferators-activated receptor 
(PPAR), liver X-receptor (LXR), hepatocyte nuclear 
factor (HNF)) have been of interest lately regarding 
drug disposition because they are now found to re-
gulate many drug-metabolizing enzymes (44). LXR 
controls the transcription of CYP7A1, CYP3A11and 
CYP2E1 (49). 

Traditional transcription such as pregnane X-
receptor (PXR), constitutive androstane/activated 
receptor (CAR), and microRNA (miRNAs) are the 
factors that control gene expressions by directly bin-
ding to specific DNA sequences (50). However, 
UGTs and CYPs are modulated mainly via epi-
genetic regulation by changing the chromatin archi-
tecture (51). This form of regulation accounts for 
gender specific regulations; for example, UGT1A 
gene repression is mediated by recruitment of his-
tones in females (51). 

In summary, drug metabolizing enzyme ex-
pression and activities are regulated by multiple 
factors, such as drug or herb chemical constituents, 
gene polymorphisms, nuclear receptors, ethnic vari-
ations, and even gender. These factors have critical 
effects on PK. Recently, non-CYP oxidative and UGT 
metabolizing enzymes have gained attention in 
DMPK research. It is important to comprehend the 

factors associated with the modulation of DME ex-
pression and its activities in predicting potential 
pharmacokinetic herb-drug interactions. 

 
T R A N S P O R T E R S '  M O D U L A T I O N  
O F  P K  
 
This review focused more on DMEs role in PK 

herbs-drug interactions. However, it is important to 
mention the role of drug transporters in pharmacoki-
netics. Drug transporters are membrane-bound pro-
teins that act like gatekeepers for cells and control 
the uptake and efflux of drugs. They are very crucial 
in the pharmacokinetics, efficacy, and toxicity of 
drugs/herbal product. Any factor that can cause 
alteration in the expression and/or activity of drug 
transporter will have consequences on the PK of the 
affected drug.  Co-administration of herbal product 
with drugs may lead to induction or inhibition of 
drug transporters resulting in a change in drug phar-
macokinetics, which may potentially cause HDIs.   

There are two major families of drug trans-
porters — ABC (ATP-binding cassette) and SLC 
(solute carriers) (52). The ABC transporters act as 
exporter, pumping drugs out of the cells with the aid 
of energy produced from the hydrolysis of ATP, 
while SLT transporters mainly utilize energy stored 
in ions across the membrane (52, 53). About 49 ABC 
transporters have been identified and classified into 
seven subfamilies: ABC1/ABCA, multidrug resis-
tance (MDR)/TAP/ABCB, MRP/ABCC, ALD/ABCD, 
OABP/ABCE, GCN20/ABCF and white/ABCG (44). 
Among ABC transporters, P-glycoprotein (P-gp) is 
the most widely studied, expressed mainly in the 
intestine, liver, kidneys, brain and placenta. Many 
substrates of P-gp (e.g. immunosuppressants, anti-
biotics and antineoplastics drugs) overlap with the 
substrates of CYPs. Transcription factors (vitamin D 
(VDR) and CCAAT/miRNAs) regulate P-gp expres-
sion (54).  
Cancer cells usually over-express P-gp and this has 
been attributed to multidrug resistance (MDR) seen 
in antineoplastic chemotherapy (55). There are 360 
SLC superfamily members which are organized into 
55 SLC families. Organic anion transporting proteins 
(OATP), organic anion, and cation transporters 
(OATs and OCTs/SLCO) are the major SLC that play 
vital roles in drug disposition (54, 56). 

The expression and activity of drug trans-
porters are regulated by herbs/drugs. Co-admini-
stration of drugs with multiple drugs or herbal pro-
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duct may lead to inhibition or induction of the 
transporters. Also, disease states may regulate the 
expression of transporters with consequent modifi-
cation of drug pharmacokinetics (2).  

 
H E R B - D R U G  I N T E R A C T I O N S  
 
Herb-drug interactions (HDIs) are pharmaco-

logical or clinical responses to co-exposure to a con-
ventional drugs and herbal medicine that exceed 
what is expected based on the known effects  of each 
agent when administered alone. The outcome of 
HDIs may affect either the drug/herb pharmacoki-
netics (quantitative alteration) or pharmacodynamic 

(qualitative alteration) (Figure 1). The pharmacoki-
netic-mediated interactions occur due to an alter-
ation in one or more processes of pharmacokinetics 
(ADME). The potential outcomes of this alteration 
include changes in pharmacokinetic (PK) parameters 
(Cmax, Tmax, and AUC), changes in drug efficacy, and 
changes in toxicity. Approximately 43% of HDI cases 
were related to PK-based interactions and contrain-
dication cases arising from herb-drug combination 
occurred (57, 7). HDIs do not always lead to unfavo-
rable effects. Favorable effects such as increased 
efficacy or reduced toxicity have been observed, and 
sometimes no effect is noticed when herbs are co-
administered with drugs (58). 

 
 

 
 

Figure 1. Quantitative and qualitative outcome of Herb-Drug interactions 
 

 
M E C H A N I S M  O F  H D I s  
 
The mechanism of HDIs is very complex due 

to the presence of numerous herbs and phyto-
chemicals. Pharmacokinetic and pharmacodynamic 
alterations are the major mechanistic pathways 
through which HDIs occur (Figure 1). The ability of 
phytochemicals in herbs to alter drug absorption, 
distribution, metabolism, and excretion (ADME) is 
the major mechanism underlying PK interactions 
(Figure 1). Thus, HDIs arise from modulation of 

metabolizing enzymes and/or transporters that 
mediate ADME of drugs in the liver, kidneys, and 
intestine (59).  

 
M E T A B O L I Z I N G - E N Z Y M E  
M E D I A T E D  H D I s  
 
Modulation (inhibition or induction) of drug 

metabolizing enzymes is the main mechanism of 
action of the bioactive constituents in the herbs 
(Figure 2). Studies have reported more CYP inhi- 
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Figure 2. Mechanisms underlying metabolism-mediated HDIs 
 
 

A) The drug-metabolizing enzyme interacts with the drug to produce expected metabolites in the absence of 
herbal constituents. B) In the presence of herbal constituents, there is a decrease in the activity of drug 
metabolizing enzymes that results in a reduction in metabolite formation. C) Interactions of herbal 
constituents with drug-metabolizing enzymes may increase enzyme expression or activity, which may result 
in the rapid metabolism of a co-administered drug. Both events in A and B may lead to significant herb-drug 
interactions, with a consequent decrease in drug efficacy or increase in drug toxicity. 

 
 

bition than induction as a mechanism of PK-based 
HDIs (60). Inhibition of metabolic enzymes can 
either be reversible or irreversible (Figure 2). Re-
versible inhibition occurs as competition for DMEs 
(CYPs, UGTs) binding sites between the substrate 
(victim drug) and the perpetrators (i.e. inhibitors). 
Reversible inhibition can be further divided into 
competitive, non-competitive, uncompetitive, and 
mixed-type inhibition (61, 62). Irreversible inhibition 
occurs when the perpetrators bind covalently to the 
active site of the DMEs. For example, a co-admini-
stration of green tea leaves with ticagrelor (a P2Y12 
receptor antagonist), a drug used in the management 
of acute coronary syndrome, may lead to a decrease 
in its bioavailability. This is due to the inhibition of 
CYP3A involved in ticagrelor metabolism by tea 
polyphenol extract (TPE) found in green tea leaves 
(63). In another study, aqueous and methanolic 
extracts of Ocimum basilicum using human liver mi-
crosomes in vitro assays reduced the activity of 
CYP2B6 by less than 50% at 200 µg/mL concentra-
tions (64). The methanolic extracts of Ocimum 

basilicum strongly inhibit the rifampicin metabolism 
pathway (64). Fructus autantii, one of the herbal 
components of the Chinese decoction used in the 
management of COVID-19 disease (QFD; Qingfei 
Paidu decoction), was found to strongly inhibit 
CYP3A4 that catalyzes testosterone 6β hydroxylation 
in HLMs (65). Also, the significance of phase II 
enzyme inhibition in PK-based HDIs cannot be 
undermined; several studies have shown the re-
levance of these enzymes in HDIs (66, 37, 2). 

Induction-mediated interaction is of major 
concern in clinical practice and drug development 
due to the possibility of herbal product consumption 
and multi-drug therapy. This is because enzyme 
induction may lead to a decrease in the efficacy of 
the co-administered drug by increasing the drug’s 
elimination, lowering drug concentration, and re-
ducing the pharmacological effects. It may also lead 
to an increase in reactive metabolite formation, re-
sulting in increased toxicity (67). A common mecha-
nism of DME induction is nuclear receptor (NR)-
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mediated, leading to increased gene transcription, 
mRNA stabilization, or active protein (68). 

The major nuclear receptor-mediators invol-
ved in metabolic enzyme induction are pregnane X 
receptor (PXR) (nuclear receptor subfamily 1 group 1 
member 2, NR1I2) and constitutive androstane re-
ceptor (nuclear receptor subfamily 1 group I Mem-
ber 3 protein, NR1I3). The activation of PXR in the 
liver stimulates the expression of CYP3A and CYP2 
(CYP2B6, CYP2C8, CYP2C9 and CYP2C19) family 
members. Likewise, UGTs, GST and SULTs families 
are expressed upon activation of PXR (62). Other 
NRs involved in the regulation of genes related to 
drug ADME are fatty acid peroxisome proliferator-
activated receptor (PPARα), retinoid-related orphan 
receptors (RORα), bile acid-activated farnesoid X 
receptor (FXR) and oxysterol activated liver X re-
ceptor (LXRα) (69), ligand-dependent transcription 
factor is involved in the induction of CYP1A1 and 
CYP1B1 (70). The binding of perpetrators (herbs) to 
any of these nuclear receptors activates it and then 
binds to the xenobiotic response element (XRE) that 
is located on the gene promoter region. This cascade 
of events will lead to increased transcription and 
translation of mRNA to proteins (67). There are 
many reports of PK-based HDIs resulting from the 
induction of metabolic enzymes. Thus, Hypericum 
perforatum (St John’s wort; SJW) extracts induced 
CYP3A4 when co-administered with indinavir 
(antiretroviral drug; protease inhibitor). There was a 
reduction in the area under curve (AUC) of indinavir 
by a mean of 57% in healthy volunteers (62). Like-
wise, the extract of Cordalis rhizoma, commonly used 
in traditional Chinese medicine, was reported to 
induce the expression of CYP2E1 and 3A1 (71). 

 
C U R R E N T  E X P E R I M E N T A L  
M O D E L S  I N  P K - B A SE D  H D I s  
 
In the past twenty years, many studies have 

been conducted to unravel the mechanism of HDIs, 
especially that of enzymes-mediated PK-based HDIs 
(72). Experimental models usually comprising the 
combination of in vitro and in vivo studies are used to 
assess HDIs with the aim of identifying pharmacoki-
netic interactions. The study design involved the 
initial in vitro screening followed by in vivo (precli-
nical and clinical) studies (73, 74). Currently, fewer 
studies are reported using in silico and physiologi-
cally based pharmacokinetic (PBPK) simulation 
models (75, 76). In metabolic enzyme-mediated PK 

based HDI models, herbs, either single or multiple 
constituents, are assumed to be perpetrators (inducer 
or inhibitor), while the conventional drug is a sub-
strate (i.e. victim drug) for the DMEs (62). This is 
because herbs contain numerous phytochemicals 
and sometimes unknown compounds which makes 
it difficult to analyze the concentration changes of all 
the phytochemicals representing their PK properties. 

 
I N  V I T R O  M E T A B O L I C  M O D E L S  
 
The philosophy of ‘fail early, fail cheaply’ is 

very relevant in the process of drug development 
(16). In vitro models allow early screening of drugs 
for possible HDIs and provide a fast, simple and 
convenient route for detecting metabolic-mediated 
HDIs. It also provides platform for human-based in 
vitro assay which gives more accurate predictability 
of human clinical outcomes than animal studies 
during preclinical studies. Thus, current guidelines 
on drug development recommend that in vivo stu-
dies will be required when in vitro studies provide 
positive outcomes (77 - 79). Also, the results obtained 
from in vitro studies are used for physiology-based 
pharmacokinetic (PBPK) modeling to improve in 
vitro to in vivo extrapolation of HDIs (76). 

Several in vitro test systems which range from 
whole cell system (e.g. intact perfused liver, primary 
human hepatocytes, and transfected cell lines) to 
enzyme preparations (e.g. liver microsomes (humans 
or animals), cytosolic and S9 fractions) can be used 
for in vitro metabolic studies. Each of these test sys-
tems has its advantages and limitations. According 
to the United State Food and Drug Administration 
Agency (FDA), the use of microsomes or supersomes 
(human lymphoblast cells containing expression of 
CYPs enzymes) is preferred and recommended for in 
vitro inhibition assay and primary human hepato-
cytes are recommended for in vivo induction assay 
(80, 81). However, the choice of the test system 
should be based on the goal of the evaluation, in vivo 
resemblance, ethical consideration, cost, and availa-
bility (16).  

Almost all the in vitro models reviewed either 
for induction or inhibition assay followed this basic 
principle: the ability of herbs or their constituents to 
inhibit or induce DMEs is determined by treating 
cells, microsomes, superstores, or hepatocytes with 
known substrate for any of the DMEs in the absence 
or presence of herbal extracts or known potent in-
hibitors of the enzyme. Enzyme activities are deter-
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mined by monitoring the changes in metabolite for-
mation. However, for induction assay detection of 
mRNA levels using real-time polymerase chain re-
action (RT-PCR) and the protein expression assay 
using Western blot are recommended in addition to 
the changes in enzyme activities (82). The most 
common analytical methods used to quantify me-
tabolites formed in the in vitro assay are liquid chro-
matography coupled with tandem mass spectro-
metry (LC-MS/MS) or a fluorescence assay. Recently, 
molecular imprinting polymers (MIP) have drawn 
the interest of researchers in bioanalytical methods 
(83). There is no report on its application in an in 
vitro experimental model for herb-drug interaction 
studies. 

 
I N  V I V O  M E T A B O L I C  M O D E L S  
 
The in vitro model demonstrates only one 

aspect of the whole PK, thus, in vivo model provides 
more multi-factorial results and the combined effects 
of ADME. Irrespective of the thoroughness of in vitro 
models, in vivo studies are required to measure drug 
exposure and to determine DDI/HDIs. Preclinical 
animal studies can be used to predict HDIs, but they 
have poor extrapolative value to humans. This is due 
to interspecies variations and the use of dosage 
regimens that are not applicable in humans (84). In 
addition, since data on herbs absorption is limited, it 
is therefore difficult to determine if the phytoche-
micals will be absorbed enough to affect the PK 
parameters of the co-administered drugs. While the 
common laboratory animal for HDI study is the rat, 
the advent or development of gene editing techno-
logy, animal models of special ADME genes are used 
to study the mechanisms of HDIs (85 - 87). The 
current trend to improve the interspecies variation is 
the use of engineered/humanized mouse models 
(88). For example, humanized CYP2C19 mice for 
drug metabolism, humanized CYP3A4, and huma-
nized CYP2D6 mice for drug interactions were 
constructed (89 - 91). The most recent is the novel 
clustered regularly interspaced short palindromic 
repeat (CRISPR/CRISPR-9) associated Cas 9-based 
animal model for the DMPK study (85, 87, 92). 

This genetic editing technology has improved 
the extrapolative values of data from animal models, 
however, the challenges of the complexity of ADME 
and the involvement of multiple human organs in 
herbs/drug metabolism persist (84). Hence, clinical 
studies are the most reliable model to investigate 

PK-based HDIs. In designing and conducting clinical 
pharmacokinetics HDI studies, the following must 
be considered: experimental design, PK parameters, 
herbal product quality, and appropriate dosage (93). 
Typically, a subject (usually healthy volunteers) will 
be administered a single dose of a test or “probe” 
drug or cocktail of drugs that are substrates for dif-
ferent DMEs/transporters (e.g. orally administered 
dolutegravir is a substrate for UGT1A1 and 
CYP3A4) and followed by PK assessments to deter-
mine the baseline DMEs activities (94). This is 
usually followed by daily multiple administrations 
of the test herbs extracts/products over a period 
usually 2 weeks to 1 month and the test drugs will 
be administered again. The pre-and post-herbal ex-
tracts administration data will be compared to 
providing a probability of an HDI (84). In vitro and in 
vivo animal studies are useful in determining the 
potential of herbs to cause HDIs, but only human 
studies (in vivo) can establish clinically relevant HDIs 
(92).   

 
I N  S I T U  M O D E L  
 
It is also known as the organ perfusion model; 

this experimental model almost mimics in vivo drug 
ADME (95). The liver perfusion model is the most 
studied of all the different organ perfusion models. 
Unlike in the in vitro test systems (hepatocytes and 
sub-cellular), the liver structure and architecture are 
maintained and all the cell populations (e.g. Kupffer 
cells), including transporters, are preserved. This 
feature makes it very close to the in vivo systems. 
This model requires minimal organ preparation 
therefore reducing organ damage. One of these 
model limitations is the very short cell viability due 
to poor cell oxygenation and nutrients. Other limi-
tations are scarce human liver source, poor repro-
ducibility, and low thoroughput (84).  

 
E X  V I V O  M E T A B O L I C  M O D E L  
 
In this model, drug and/or herbal extracts are 

administered to animals followed by organ harvest 
(e.g. liver to prepare liver microsomes) and it is used 
to determine changes in activities or expression of 
DMEs. This model has been reported for HDIs 
studies (96), however, it is commonly used in in-
duction and toxicity studies. The liver is often stu-
died for the effect of herbs co-administered with 
conventional drugs on DMEs activities and/or levels 
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because it is the organ that is mostly exposed to 
drugs and other xenobiotics. These changes in DME 
expression or activities could in turn explain the 
changes in drug PK or be linked to the toxicities (95).  

 
I N  S I L I C O  P R E D I C T I O N  
 
This model is becoming popular because it is 

less expensive and not time-consuming unlike the 
other models. It is also known as dry laboratory 
because the experiment is largely done on com-

puters. Most often it is done early by the researcher 
because its outcome usually determines if there is a 
need to proceed to the in vivo study. Although this 
method and the others have their limitations, it is 
better to combine these methods to have a holistic 
view of HDIs (Figure 3). In silico method is com-
monly used to study the interactions of bioactive 
components of the medicinal plant and cytochrome 
P450 (97, 98). Several free online tools are available 
(99).  

 

 
Figure 3. Current tools of herb-drug interactions study 

 
 
C U R R E N T  T R E N D S  O F  R E S E A R C H  
O N  H D I s  
 
Herbal products are commonly used for treat-

ment of some ailments and as dietary supplements 
(100). Co-administration with conventional drugs 
may lead to clinically relevant HDIs resulting in 
either increased/decreased efficacy or toxicities. 
Drugs such as digoxin with narrow therapeutic win-
dow are usually associated with HDIs (57). HDIs 
with both pharmacokinetics and pharmacodynamic 
consequences were reported (101). 

Reported cases of HDIs are largely based on in 
vitro and in vivo animal studies that do not have 
significant clinical relevance (102, 7, 103). One of the 
challenges in HDIs research is the inconsistencies in 
preclinical data and low clinical relevance of results 
reported from preclinical studies. This is due to poor 
standardization of herbal products and interspecies 
variation in DMEs especially between rodents and 
humans (5). To improve on the challenges faced in 
extrapolating preclinical (in vitro and in vivo animal 
studies) data, PBPK mathematical simulation were 
developed to predict HDIs (104, 67). For example, 
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PBPK mathematical simulation was used to predict 
HDIs between tacrolimus and Schisandra 
sphenanthera extracts mediated by CYP3A4 inhibition 
(105). However, limited human PK data of herbs 
phytochemicals restrict the application of PBPK 
model in HDIs studies (76). Thus, very well-de-
signed clinical studies are required to evaluate the 
efficacy and safety of the concurrent use of herbs and 
conventional drug.  

 
C L I N I C A L L Y  R E L E V A N T  H E R B -  
D R U G  I N T E R A C T I O N  S T U D I E S  
  
Herb-drug pharmacokinetic interactions 

become clinically relevant when significant changes 
occur in the pharmacokinetic parameters of the co-
administered conventional drug. These parameters, 
which are directly related to the efficacy and toxicity 
of the drug, include the area under the curve (AUC), 
maximum concentration (Cmax) or time to reach ma-
ximum concentration (Tmax). Herb-drug pharmacoki-
netic interactions associated with high risks and 
severe adverse reactions may be experienced with 
drugs that have narrow therapeutic indices (e.g. 
digoxin, phenytoin, and warfarin) (106, 107). Many 
of the herb-drug pharmacokinetic interactions are 
difficult to anticipate in clinical practice as they often 
occur through multiple mechanisms and are usually 
dependent on many factors. In some cases, insuf-
ficient clinical evidence exists to confirm pharmaco-
kinetic effects of herbs on drug molecules that were 
observed during in vitro and in vivo animal studies. 

Some HDIs have been reported in in vitro and 
in vivo studies as well as with clinical cases. In this 
section, some empirical examples of PK-based in-
fluence of herbal drugs on conventional medicines 
with significant clinical relevance are highlighted as 
follow: 

1. Allium sativum L. (Alliaceae) bulb is com-
monly called garlic (local name: Ayu).  

Ethnomedicinally, A. sativum is used for 
flatulence, intestinal worms, dysentery, diabetes, and 
cough (108 - 110). It has been scientifically validated 
as an antimicrobial, anti-hypertensive, hypolipi-
daemic, and immune booster (111). It contains 
sulphur-containing compounds such as allicin, alliin, 
and flavonoids e.g. quercetin, rutin, as well as 
terpenes, saponins etc. 

Garlic was reported to have no effect on the 
PK of alprazolam, caffeine, ciclosporin, debriso-
quine, paracetamol, simvastatin, ritonavir, docetaxel, 

and midazolam (112, 113). However, it decreased the 
AUC and Cmax of saquinavir, an antiviral drug, and 
chlorzoxazone as well as warfarin (101, 113, 114). 

2. Actaea racemosa (Ranunculaceae), commonly 
called Black cohosh, is a herbal medication for post-
menopausal symptoms. It did not affect the PK of 
midazolam, caffeine, and digoxin.  However, it 
showed a weak inhibition of CYP2D6 resulting in an 
increased urinary ratio of debrisoquine (115). 

3. The roots of Echinacea purpurea, and 
Echinacea pallida are commonly called purple root 
and pale coneflower root, respectively. They are 
used as adjuvant therapy and prophylaxis of re-
current infections of the upper respiratory tract such 
as the common cold and influenza (116). They pos-
sess a similar phytochemical profile of which alkyl 
amides, implicated in the HDIs, are the major 
compounds. 

Echinacea was reported not to affect the phar-
macokinetics of darunavir-ritonavir, although there 
was slight decrease with this drug when co-admi-
nistered with Echinacea purpurea (117).  

4. Gingko biloba (Gingkoaceae) is commonly 
known as gingko. It is used for cerebral insufficiency 
and memory enhancement (118 - 120). Gingko con-
tains flavonoids such as quercetin, kaempferol, 
isorhamnetin, and terpene trilactones (e.g. Ginkgo 
bilobalides A, B and C; and bilobalide) (119, 121). 

Gingko showed no PK effect on bupropion, 
caffeine, chlorzoxazone, clopidogrel, debrisoquine, 
diazepam, digoxin, lopinavir, metformin, and 
nifedipine (122). However, gingko altered the plas-
ma concentrations of omeprazole and alprazolam by 
induction of CYP 2C19 and CYP3A4, respectively 
(123, 124). Also, induction of CYP2C19 is also res-
ponsible for the life-threatening seizures reported in 
a patient on valproic acid (125). Therefore, the con-
sumption of gingko should be monitored or avoided 
in patients receiving drugs metabolized by 
CYP2C19, while the effect of gingko on CYP3A4 or 
P-gp requires additional study (126). 

5. Piper methysticum G. Forst root (Piperaceae) 
commonly known as kava kava is used in the 
treatment of depression, anxiety, insomnia, and rest-
lessness. The bioactive compounds include kavalac-
tones including methysticin and dihdryomethysticin 
(127-129). 

Kava kava has no significant effect on the PK of 
midazolam, digoxin, debrisoquine, caffeine, how-
ever, by possible additive effect on GABA receptors, 
it cases disorientation and lethargy with alprazolam 
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(110, 130). By the inhibition of CYP2E1, it causes a 
decrease in serum ratios of 6-hydroxychlorzoxazone 
to chlorzoxazone by 40%, thus, it must not be co-
administered with chlorzoxane (12, 131). 

6. Silybum marianum (Compositae/Asteraceae) 
with synonym as Carduus marianus, is commonly 
called Milk-thistle. 

Ethnomedicinally, it is used in some parts of 
Europe as an effective liver remedy.  This claim has 
been scientifically justified as several flavonolignans 
have been isolated from the leaf and fruit (132). The 
major bioactive constituent from the seed is sily-
marin which is composed of three isomer flavo-
nolignans (silybin, silydianin, and silychristin). Sily-
bin has the most pronounced biological activity, and 
it is the major component (50 – 70%) of silymarin 
(133). 

S. marianum caused an induction of intestinal 
P-gp and CYP3A4 leading to the increased clearance 
and decreased half- life, Cmax and AUC of metro-
nidazole (134, 135). Also, by inhibition of P-gp, it led 
to an increased Cmax and AUC of talinolol (135, 136). 
Its inhibition of CYP2C9 led to increased AUC and 
decreased metabolic ration of losartan (135). How-
ever, milk-thistle had no effect on the PK of caffeine, 
debrisoquine, midazolam, nifedipine, ranitidine, 
digoxin, and indinavir (137, 131, 135, 138, 139, 140).  

7. Panax ginseng (Araliaceae) commonly called 
ginseng, has its root in high use in traditional 
Chinese medicine. Its major active components are 
dammarane-type saponins named ginsenosides by 
Japanese scientists and panaxosides by Russian sci-
entists (141). However, the two series of chemical 
constituents are not completely identical, especially 
about the sugar moieties. Ginseng contains a mixture 
of both steroidal and pentacyclic triterpenoids sa-
ponins (142). These saponins are implicated in HDIs 
involving ginseng. Ginseng has various pharmaco-
logical activities, including effects on the central 
nervous system, antineoplastic effects, and immune-
modulatory effects. In vitro studies have shown that 
ginseng can inhibit CYP2C9, CYP2C19, CYP2D6 and 
CYP3A4 (143). In rats, P. ginseng (150 mg/kg/day) for 
14 days decreased the AUC from 0 to 12 hours of 
oral fexofenadine, decreased the Cmax and signi-
ficantly reduced the ratios of brain to plasma concen-
trations (144). Available clinical evidence shows that 
the probability of an HDI involving ginseng is low 
(145). 

8. Hypericum perforatum L. (Hypericaceae), 
known as St John’s Wort (SJW), is the most extensi-

vely investigated herbal medicine involved in HDIs. 
Ethnomedicinally, it is used as antidepressant, and 
this has been scientifically validated as useful in 
mild to moderate depression (146, 147). It contains 
bioactive constituents such as flavonoids including 
quercitrin, quercetin, naphthodianthrones, and hy-
pericin (148, 149). 

In vitro studies have suggested that SJW ex-
tracts can inhibit CYP3A4, CYP2C9, CYP1A2, 
CYP2D6 and CYP2C19 (150). Individual constituents 
of SJW have different inhibitory effects on CYP 
isoenzymes, for example, hyperforin is a non-compe-
titive inhibitor of CYPs, while quercetin and some 
other flavonoids are more selective for CYP1B1. 
Hypericin is a potent inhibitor of many CYP en-
zymes. 

SJW has the potential for both PK and PD in-
teractions, and clinically, it depends on the duration, 
dosage, and therapeutic range. As found in the case 
of oral contraceptives failure, it was reported that 
concurrent use of SJW with oral contraceptive pills 
significantly increases the clearance of these pills 
(150, 151). Since the potential of HDIs with SJW is 
high, patients should be discouraged from taking 
SJW when on prescription medicines (126, 152).  

In Nigeria, the following cases of HDIs have 
been reported both in in vitro and clinical cases, and 
quite a few in animal studies. For this review, na-
tural products taken as beverage or foods are ex-
cluded, and only plants or herbal products taken for 
medicinal purposes are included. 

1. In an in vitro study, quinine was adsorbed 
onto Garcinia kola, and it resulted in decreased 
quinine availability (153). In this study, concurrent 
oral administration of quinine and G. kola seed 
resulted in a decrease in the Tmax of quinine ,which 
led to the reduction in the Cmax, exposure of quinine 
and its major metabolite (3-hydroxyquinine). The 
absorption of quinine was delayed as evidenced 
from an increase in the Tmax of quinine. A significant 
herb-drug interaction was reported in this study; 
caution must be taken by individual on quinine oral 
therapy and Garcinia Kola (153). 

2. Ciklavit, a liquid herbal formulation made 
from the extracts of Cajanus cajan seeds, used for the 
management of sickle cell anemia disease in Nigeria, 
significantly decreased the dissolution of proguanil 
tablets in vitro (154). However, the animal or clinical 
studies on this observation have not been reported. 

3. Manix, made from the extracts Asparagus 
racemosus, Tribulus terrestris; Tinospora cordifolia; 
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Semecarpus anacardium; Pueraria tuberose; Plumbago 
zeylanica; Cinnamomum zeylanicum; Elettaria 
cardamomum; Cinnamomum tamala; Dioscorea bulbifera; 
and Sesamum indicum are used in the management of 
male infertility in Nigeria was reported to have effect 
on the pharmacokinetics of perfloxacin, an antibiotic, 
in the rat.  Concurrent usage of perfloxacin with this 
herbal product significantly reduced the Cmax, Tmax, 
and AUC of this antibiotic (155). 

4. The leaf of Moringa oleifera (Moringaceae) is 
taken as food and as medicine in Nigeria. In rat sys-
tem, it was observed that it altered the PK of 
amodiaquine by reducing the Cmax but increasing the 
AUC on coadministration and pre-treatment with 
Moringa. This implied PK interaction with effect on 
absorption (156). In another study in human volunte-
ers, the concurrent administration of the Moringa 
oleifera leaf extract resulted in a significant decrease 
in the Cmax of amodiaquine, an antimalarial drug 
(157).  

5. A study conducted in mice to investigate 
MAMA Decoction (MD), an antimalarial product 
prepared from the leaves of Mangifera indica L., 
Alstonia boonei De Wild, Morinda lucida Benth and 
Azadirachta indica, revealed an increase in the Cmax 
of amodiaquine with the concurrent administration 
of MD. There was an increase in the exposure and 
half-life of amodiaquine and its metabolite, desethyl-
amodiaquine (158). 

6. Cola nitida commonly known as kolanut is 
commonly chewed in Nigeria. The Cola nitida was 
shown to have implications on the PK of halo-
fantrine in healthy volunteers. There was a signifi-
cant decrease in the plasma concentrations of halo-
fantrine and its active metabolite desbutylhalo-
fantrine when kolanut was simultaneously used 
with halofantrine. Thus, caution must be taken 
whenever halofantrine is used along with caffeine-
containing substances such as kolanut (159).   

7. In addition, the effect of the administration 
of chloroquine and aqueous leaf extract of 
Azadirachta indica was investigated in rabbits. This 
study revealed a significant decrease in serum con-
centration, slower absorption, elimination and pro-
longed half-life of chloroquine. Other pharmacoki-
netic parameters such as area under the curve, Cmax, 
absorption rate and volume of distribution were 
significantly reduced when chloroquine was co-
administered with A. indica (160). 

 

CONCLUSION 
 
Substantial progress has been made in the 

methods used to evaluate PK-based HDIs, however, 
the progress is incomparable to the achievements 
made in DDIs studies. This is not far from the 
challenges of extrapolative values and inconsis-
tencies of outcome of most of the HDIs preclinical 
studies. However, there is still demand for well-
designed preclinical and clinical studies that will 
improve understanding of the underlying mecha-
nisms of HDIs. A lot needs to be done in communi-
cating clinically relevant findings to provide well-
informed clinical decision with respect to herb-drug 
combination. It is important to understand the com-
plexity of herbs and phytochemicals, various in-
trinsic factors present in respective experimental 
models, and diverse factors considered in study de-
signs to improve the evaluation methodologies and 
interpretations of HDIs. 

Nevertheless, efforts have been made to im-
prove the extrapolation of research findings during 
preclinical (in vitro and in vivo animal studies) HDI 
studies. Such attempted efforts include the gene-
tically modified animals that have been transfected 
with human genes to express the same enzymes as 
humans (e.g. humanized mice) and PBPK simulation 
of both in vitro and in vivo preclinical data to predict 
clinically relevant HDIs. This review adds credence 
to the existing knowledge of HDI and encourages 
that more preclinical and clinical studies be 
conducted to further ascertain the associated 
complexities of the interactions between herbs com-
ponents and drugs co-administered. While the ad-
ditive or synergistic interaction could be exploited 
for further development, the antagonistic should be 
ultimately discouraged. As the mechanism of meta-
bolism of herbal supplements and the PK of HDI 
remains obscured, users and herbs/drug administra-
tors must take caution to minimize incidences of 
fatalities. 
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S A Ž E T A K  

 
 
Uvod/Cilj. Biljke su vitalni obnovljivi izvor koji se kroz istoriju koristio u medicinske svrhe; veći deo 
globalne populacije i dalje zavisi od njih i koristi ih za očuvanje zdravlja. Sve veća popularnost biljnih 
suplemenata izazvala je očiglednu zabrinutost zbog ukupne bezbednosti i potencijalne interakcije sa drugim 
lekovima in situ. Cilj ovog rada bio je da se podstaknu buduća istraživanja o interakcijama biljaka i lekova, 
kao i o mehanizmima interakcija kako bi se razumele njihove posledice. 
Metode. Pregled je sproveden sistematskom pretragom relevantne literature iz baza podataka Google 
Scholar, Science Direct, Mendelei, Scopus i PubMed. U obzir su uzeti radovi napisani na engleskom jeziku. 
Zaključak. Pokazalo se da mnogi biljni proizvodi stupaju u reakciju sa najčešće primenjivanim lekovima. 
Mehanizam inhibicije‒indukcije izaziva lančane reakcije koje često dovode do smanjene bioraspoloživosti 
lekova, toksičnosti ili neželjenih sporednih efekata. Pojedini biljni fitokonstituenti navodno se vezuju za 
enzime CIP2C9, CYP2C19, CIP2E1 i CIP3A1 privremeno ili trajno. U zaključku ovog rada ukazano je na 
neophodnost rutinskog i redovnog obaveštavanja i lekara i bolesnika o opasnostima poput smanjene 
efikasnosti i povećane toksičnosti povezanim sa interakcijama biljaka i lekova. Potrebno je da se osobe koje 
koriste biljne suplemete informišu o njihovoj odgovarajućoj upotrebi kako bi se izbegao rizik od neželjenih 
interakcija lekova u toku istovremene primene ili u kombinovanim terapijama. S obzirom na to da se u 
interakcijama između biljaka i lekova mogu uočiti sinergistički i antagonistički efekti, treba sprovesti 
naknadne pretkliničke i kliničke empirijske studije da bi se naglasio mehanizam i obim ovih interakcija. 
 
Ključne reči: interakcija između biljaka i lekova, enzimi, farmakokinetičke interakcije, tradicionalna 
medicina, citohrom P450 
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