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SUMMARY 

The metabolic pathways of chlorpromazine (CPZ) toxicity were tracked by assessing 
oxidative/nitrosative stress markers. The main objective of the study was to test the hypothesis that 
agmatine (AGM) prevents oxidative/nitrosative stress in the liver of Wistar rats 15 days after 
administration of CPZ. All tested substances were administered intraperitoneally (i.p.) for 15 
consecutive days. The rats were divided into four groups: the control group (C, 0.9 % saline 
solution), the CPZ group (CPZ, 38.7 mg/kg b.w.), the CPZ+AGM group (AGM, 75 mg/kg b.w. 
immediately after CPZ, 38.7 mg/kg b.w. i.p.) and the AGM group (AGM, 75 mg/kg b.w.). 

 Rats were decapitated 15 days after the appropriate treatment. In the CPZ group, CPZ 
concentration was significantly increased compared to C values (p<0.01), while AGM treatment 
induced the significant decrease in CPZ concentration in the CPZ+AGM group (p<0.05) and the 
AGM group (p<0.01). CPZ application to healthy rats did not lead to any changes of lipid 
peroxidation in the liver compared to the C group, but AGM treatment decreased that parameter 
compared to the CPZ group (p<0.05). In CPZ liver homogenates, nitrite and nitrate concentrations 
were increased compared to controls (p<0.001), and AGM treatment diminished that parameter in the 
CPZ group (p<0.05), as well as in the AGM group (p<0.001). In CPZ animals, glutathione level and 
catalase activity were decreased in comparison with C values (p<0.01 respectively), but AGM 
treatment increased the activity of catalase in comparison with CPZ animals (p<0.05 respectively). 
Western blot analysis supported biochemical findings in all groups. Our results showed that 
treatment with AGM significantly supressed the oxidative/nitrosative stress parameters and restored 
antioxidant defense in rat liver. 
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INTRODUCTION  
 
Oxidative and nitrosative stress are involved in 

the pathophysiology of various neurological disorders. 
Chronic treatment with neuroleptics increases the 
production of free radicals and the development of 
oxidative stress (OS) (1). Typical antipsychotics lead to 
increased OS by altering the levels of antioxidant 
enzymes, and cause oxidative damage, particularly 
lipid peroxidation (LPO) in the brain (2).  

Chlorpromazine (CPZ) is a typical antipsychotic 
that may cause distressing side effects involving the 
extrapyramidal tract (3). The mechanism of CPZ-
induced liver injury has been proposed, but has not 
been fully clarified, since many factors were found to 
be implicated in its adverse effects on the liver. CPZ 
leads to a dose-related impairment in bile secretion and 
changing hepatocyte and canalicular membrane 
fluidity, which consequently affects the functional 
integrity of these sites. It has been shown that oral 
administration of CPZ for two weeks causes infiltration 
of inflammatory cells and leads to focal necrosis (4).  

The mechanism responsible for CPZ-induced 
injury includes damage initiated by the activation of 
Kupffer cells, which release proinflammatory cytokines 
and stimulate the migration and accumulation of 
neutrophils and monocytes in the liver. Activated 
inflammatory cells amplificate primary injury induced 
by CPZ (5).  

It is known that neuroleptics increase free 
radical production and development of OS (1). 
Tiobarbituric acid reactive supstances (TBARS) are 
markers of LPO and were significantly increased after 
CPZ poisoning (6) 

The induction of LPO may be a major factor in 
oxidative- and nitrosative-mediated liver damage (7). 

Nitric oxide (NO) is the product of a five-
electron oxidation of the amino acid L-arginine. It can 
produce hydroxyl radicals (OH•) as well as nitrogen 
dioxide radical (8). Nitric oxide is produced by the 
action of the isoenzymes of NO synthases (NOS). It 
may react with thiol groups in amino acids and 
proteins and form relatively stable nitroso-thiols (9). 
Also, NO can be coupled with superoxide anion radical 
(O2•-) to produce peroxynitrite (ONOO-), a harmful 
compound to cellular structures, which has been linked 
to several interactions that may contribute to cellular 
damage, including LPO (10).  

Under physiological conditions, the potential for 
free radical-mediated damage is kept in check by the 
antioxidant defense system, which is composed of 

enzymatic and non-enzymatic components (2). Our 
previous study showed that CPZ increased the 
production of free radicals and affected the antioxidant 
enzyme activity in rat liver (11). It is known that OS in 
the liver is a consequence of increased production of 
free radicals and decreased capacity of antioxidant 
defense systems in hepatocytes (12). 

The present study was directed to potentially 
benefit the influence of agmatine (AGM) on oxidative 
stress development during CPZ toxicity. The liver 
plays a crucial physiological role in the maintenance of 
AGM homeostasis (13, 14). Studies have shown that 
AGM may serve as a novel therapeutic strategy for 
hepatic inflammatory diseases (15, 16). Contrary, 
biochemical analysis in experimental rats revealed that 
CPZ treatment significantly induced LPO and 
decreased glutathione (GSH) levels, as well as 
antioxidant defense enzymes superoxide dismutase 
(SOD) and catalase (CAT) (3). Based on these findings, 
the main objective of our research was to investigate 
the role of reactive oxygen (ROS) and nitrogen (RNS) 
species, as well as the efficiency of antioxidant 
protection in rat liver in subacute CPZ intoxication 
after AGM treatment. 

 
MATERIAL AND METHODS 
 
Animals 
 
The experimental animals were treated 

according to the Guidelines for Animal Study, No. 
282-12/2002 (Ethics Committee of the Military Medical 
Academy, Belgrade, Serbia and Montenegro).  

Male adult Wistar rats, 2 months old, with 
body mass 200 ± 50 g, were used for the experiment. 
Groups of two or three rats per cage (Erath, FRG), 
were housed in an air conditioned room at the 
temperature of 23 ± 2 ºC with 55 ± 10 % humidity and 
with lights on 12 h/day (07.00-19.00 h). The animals 
were given a commercial rat diet and tap water ad 
libitum.  

 
Experimental procedure 
 
The experiment was accomplished with the 

following (four) experimental groups, which received 
different testing substances: the control group (C, 0.9 
% saline solution), n = 10; the CPZ group (CPZ-HCl 
38.7 mg/kg b.w.), n = 10; the CPZ+AGM group (AGM, 
75 mg/kg b.w. i.p., immediately after CPZ-HCl 
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administration, 38.7 mg/kg b.w.), n = 10; and the AGM 
group (AGM, 75 mg/kg b.w. i.p.), n = 10. The animals 
were sacrificed by decapitation 15 days after the 
treatments. For the same purpose, the liver were 
excised and stored at -20 °C. 

 
Determination of CPZ concentration 
 
The concentration of CPZ was determined in 

the liver using a high performance liquid 
chromatography-tandem mass spectrometry (HPLC 
MS / MS) (17). 

In one gram of liver tissue, 4 mL of acidic 
acetonitrile was added and the sample was 
homogenizated on Ultra Turax, then centrifuged for 
10 minutes at 3500 rpm. After centrifugation the 
supernatant was decanted into clean tube and 6 mL 10 
% NaCl solution were added to the supernatant. The 
purification was performed on C-18 columns, which 
were conditioned by passing of 5 mL of methanol, 
folowed by 5 mL of water. After the sample extract 
was loaded onto conditioned SPE colums and passed 
trough, SPE columns were washed with 1 mL 0.01 
mol H2SO4. CPZ was eluted from SPE colums with 
2x3 mL mixture of acidic acetonitrile and methanol 
(50:50), eluated then evaporated under the stream of 
nitrogen and the residue was dissolved in 1mL of a 
mixture of acidic acetonitrile and methanol (50:50). 

The method was performed on HPLC MS/MS 
Waters Acquity with TQD detector. The 
chromatographic conditions for HPLC MS/MS were 
as follows: guard column and a reversed phase 
column C-18; 2.1 x 100 mm; 3.5 μm; temperature 35 
°C, mobile phase A- 0.1 % HCOOH in water : B-
methanol. Gradient: 0 min - 5 min 95 % A, 5 min - 6 
min 30 % A, 6 min – 7 min 0 % A, 7 min-13 min 95 % 
A, a mobile phase flow rate was 0.4 mL/min. The 
mass detector in the positive ESI mode: protonated 
molecular ion: m/z 319.3 → 86. 319,3 → 245.9 for CPZ. 
The voltage on the capillaries was 3.5 kV. Cone 
voltage 35 V. 

The stock standard solution of CPZ was 
prepared in methanol (concentration 0.897 mg/mL) 
and standard working solutions were prepared by 
diluting the stock standard solution in mobile phase.  

 
Measurement of oxidative/nitrosative 
status parameters  
 
The liver tissue was dissected on ice, and slices 

of the liver tissue were transferred separately into 

cold buffered sucrose (0.25 mol/L sucrose, 0.1 mmol/L 
EDTA in 50 mM sodium-potassium phosphate buffer, 
pH 7.2). Homogenization of the tissue in the sucrose 
medium was performed by a homogenizer with a 
Teflon pestle at 800 rpm for 15 minutes at 4 °C.  The 
supernatant was centrifuged at 2500 g for 30 minutes 
at 4 °C. The resulting precipitate was suspended in 1.5 
mL of deionised water. Homogenates were 
centrifuged at 2000 g for 15 minutes at 4 °C and the 
resulting supernatant was used for analysis (18). Total 
protein concentration was estimated with bovine 
serum albumin as a standard (19).  

  Lipid peroxidation in forebrain cortex was 
measured as tiobarbituric acid reactive substances 
production (TBARS), as described by Girotti et al. (20). 
Data were expressed as nmol per mg of proteins. 

After deproteinization, the production of NO 
was evaluated by measuring nitrite and nitrate 
concentrations (NO2+NO3). Nitrates were previously 
transformed into nitrites by cadmium reduction (21). 
Nitrites were assayed directly spectrophotometrically 
at 492 nm, using the colorimetric method of Griess 
(Griess reagent: 1.5 % sulfanilamide in 1 mol HCl plus 
0.15 % N-(1-naphthyl) ethylendiamine 
dihydrochloride in distilled water). The results were 
expressed as nmol per mg of proteins. 

Total glutathione (GSH+1/2GSSG, in GSH 
equivalents) content was determined with DTNB-
GSSG reductase recycling assay. The rate of formation 
of 5-thio-2-nitrobenzoic acid (TNB), which is 
proportional to the total GSH concentration, was 
followed spectrophotometrically at 412 nm (22). The 
results were expressed as nmol per mg of proteins.  

Catalase activity was determined by 
spectrophotometric method. Ammonium molybdate 
forms a yellow complex with H2O2 and is suitable for 
measuring both serum and CAT activity in the tissue 
(23). Kinetic analysis was performed at 405 nm. Units 
of CAT activity is defined as the number micromol 
H2O2 reduced per minute (μmol H2O2/min). Data 
were expressed as U CAT per mg of proteins. 

 
Reagents 
 
All chemicals used in this study were of 

analytical grade. DTNB, NaH2PO4, ammonium 
molybdate, NADPH and NADH were purchased 
from Merck (Darmstadt, Germany).  Na2HPO4 x 
2H2O, TCA, methanol and GSSG (oxidized form) 
were purchased from Serva, Feinbiochemica GmbH & 
Co Heidelberg, New York. TBA was purchased from 
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ICN Biomedicals Inc., Ohio, and acetonitrile was 
purchased from Backer J.T., Deventer, Netherlands. 
Glutathione reductase (EC 1.6.4.2), Type III, from 
yeast [9001-48-3], Sigma Chemical Co (St Luis, MO, 
USA) – highly refined suspension in 3.6 M (NH4)2SO4, 
at pH 7.0; 2500U/1.6 mL (9.2 mg prot/mL – biuret) 170 
U/mg proteins (Note: 1 unit reduces 1 μmol 
GSSG/min, pH 7.6 at 25 ºC). Sodium nitrate (NaNO3) 
was purchased from Mallinckrodt Chemical Works – 
St. Louis, MO, USA. Analytical standard for CPZ was 
purchased from Sigma-Aldrich Corporation, St. Louis, 
MO, USA; catalog number C8138, as well as 
sulphanilic acid and N-(1-naphthyl)ethylendiamine 
dihydrochloride. Saline solution (0.9 % w/v) was 
purchased by the Hospital Pharmacy (Military 
Medical Academy, Belgrade, Serbia).  All solutions 
were made on the day when the experiments were 
done. 

 
Western blot analysis 
 
After decapitation, livers were dissected and 

pooled from three animals. The selected tissue was 
homogenized with a hand-held pestle in sodium 
dodecyl sulfate (SDS) sample buffer (10 ml/mg), 
which contained a cocktail of proteinase and 
phosphatase inhibitors (24). The electrophoresis 
samples were heated at 100 °C for 5 minutes and 
loaded onto 10 % SDS-polyacrylamide gels with 
standard Laemmli solutions. The proteins were 
electroblotted onto a polyvinylidene difluoride 
membrane, which were placed in a blocking solution 
(Tris-buffered saline with 0.02 % Tween TBS-T and 5 
% non-fat dry milk) for 1 hour, and incubated 
overnight under gentle agitation with primary 
antibody mouse anti-ED1 (1:7000 Abcam, Cambridge, 
UK) and mouse anti-β-tubulin (1:1000; Sigma, St 
Louis, MO, USA). Bound primary antibodies were 
detected with a horseradish peroxidase (HRP)-
conjugated anti-mouse secondary antibody (1:5000; 
Santa Cruz Biotechnology, Santa Cruz, CA, USA). 
Immunoreactive bands were visualized on X-ray films 
using chemiluminescence. Optical densities of 
immunoreactive bands from 4 independent blots 
were calculated in Image Quant program.  The 
densities of ED1 and β-tubulin immunoreactive bands 
were quantified with background subtraction. 

Squares of identical sizes were drawn around each 
band to measure density, and background near that 
band was subtracted. For each blot, optical densities 
were normalized against β-tubulin levels. 

 
Statistical analysis 
 
One Way ANOVA and Kolmogorov-Smirnov 

test were used (Software GraphPad Prism, version 
5.01) for statistical data analysis. The data are 
presented as mean ± SEM. The statistical significance 
of differences was determined by p < 0.05. 

 
RESULTS 
 
The results of our study found that CPZ 

treatment induced different changes in parameters of OS 
and antioxidant capacity in liver samples of 
experimental rats.  

 
CPZ concentration in the rat liver 
 
The concentration of CPZ was significantly 

increased in the liver of CPZ-treated animals compared 
to the controls (Table 1). The treatment with AGM alone 
or applied together with CPZ decreased CPZ 
concentration in the liver, compared to the CPZ group. 

Table 1. CPZ concentration (ppm) in the rat liver 15 
days after appropriate treatment 

 CPZ concentration 
    C 
    CPZ 
    CPZ+AGM 
    AGM 

1.30 ± 0.60 
4.70 ± 1.79** 
2.40 ± 1.11# 
1.35 ± 0.91## 

 
Concentrations of parameters of 
oxidative/nitrosative status in the rat liver 
 
The concentration of TBARS in the CPZ+AGM 

group was significantly decreased 15 days after the 
treatment in the liver, compared to CPZ-induced TBARS 
increase (compared to the control values) in the CPZ 
group of animals (Table 2). 
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Table 2. Concentrations of parameters of oxidative/nitrosative stress – TBARS (nmol/mg proteins), NO2+NO3 
(nmol/mg proteins) and antioxidative defense – GSH (nmol/mg proteins), CAT (U/mg proteins) in the liver of 

Wistar rats 

 TBARS 
(nmol/mg proteins) 

NO2+NO3 

(nmol/mg proteins) 

GSH 
(nmol/mg proteins) 

CAT 
(U/mg proteins) 

C 
CPZ 
CPZ+AGM 
AGM 

7.34 ± 1.68 
8.27 ± 1.41 
6.33 ± 0.45# 
9.37 ± 0.94 

12.00 ± 1.15 
20.78 ± 2.60*** 
16.83 ± 2.19***,# 
12.35 ± 2.02### 

14.50 ± 1.98 
9.73 ± 1.12** 

8.35 ± 1.00***,# 
18.18 ± 2.68*,### 

84.10 ± 4.21 
70.90 ± 6.88** 
79.68 ± 5.62# 
84.83 ± 11.16# 

 
 

 
The administration of CPZ resulted in 

NO2+NO3 concentrations increase 15 days after the 
tretmant in the liver, compared to controls (Table 2). 
In the CPZ+AGM and AGM group of animals, 
NO2+NO3 concentrations were decreased in the liver, 
compared to CPZ-treated group.   

In the CPZ group, total GSH content was 
significantly decreased in the liver compared to the 
controls (Table 2). Total GSH content significantly 
decreased in the CPZ+AGM group compared to CPZ 
group in the liver 15 days after the treatment. 
Contrary, total GSH concentration increased in AGM 
group compared to both control and CPZ group in 
the liver (Table 2). 

In the CPZ group, after 15 days, CAT activity 
was significantly lower in the liver, compared to the 
control (Table 2). However, CAT activity significantly 
increased in both CPZ+AGM and AGM groups in the 
liver, compared to CPZ-treated animals 15 days after 
the treatment. 

 
Western blot analysis 
 
To assess the pattern of ED1 protein expression 

following CPZ-induced liver injury in rats and after 
AGM treatment, livers were isolated 15 days post-
injury. Immunoblot analysis showed that ED1 was 
present as a single band with a molecular mass of 
about 37 kDa (Figure 1). There was a significant 
increase in ED1 expression in physiological control 
compared to all other groups (CPZ, CPZ+AGM, 
AGM). 

Figure 1. Quantitative immunoblot detection of ED1 
protein levels in the liver isolated from control, CPZ, 
CPZ+AGM and AGM group 15 days after the 
treatment. Bars represent mean ED1 protein 
abundance (± SEM) from three independent 
determinations expressed relative to β-tubulin. 
Significance level is shown in the graph (*p < 0.05 vs. 
control), which is accompanied by a representative 
immunoblot. 
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DISCUSSION 
 
Presented results showed that OS played an 

important role in subacute CPZ-induced liver injury 
in rats, which can disturb the balance between 
ROS/RNS production and antioxidant defense in the 
liver.  

In the rat liver, there was a greater increase in 
CPZ concentration compared to the brain. It confirms 
previous findings of the largest amount of deposited 
CPZ in the liver with the most important role for the 
manifestation of its harmful effects (25, 26). Subacute 
application of CPZ during 15 days induced the 
increase of concentration of the drug in rat liver 
compared with the control values (Table 1). However, 
the administration of CPZ+AGM significantly 
decreased CPZ concentration in the liver, indicating 
that the presence of AGM reduced the deposition of 
CPZ.  

Our research showed no significant change in 
the concentration of TBARS in the liver after CPZ 
administration (but a slight increase), while the 
combined treatment CPZ+AGM after 15 days 
significantly reduced the concentration of TBARS 
compared to the controls (Table 2). The liver has the 
greatest sensitivity to changes caused by CPZ and the 
reduction of TBARS by AGM may be the result of 
some induced mechanism of hepatoprotection (27).   

It has been reported that low concentrations of 
AGM (10–100 mM) are able to amplify an OS 
pathway, which is triggered by the reaction products 
of AGM oxidation (28). However, if AGM is present 
at higher concentrations (e.g. 1–2 mM), it does not 
affect mitochondrial respiration and is ineffective in 
inducing OS (29). 

Increased NO2+NO3 concentrations accompanied 
by a reduced total GSH content in the liver tissue 
homogenates 15 days after CPZ administration 
indicate that nitrosative stress associated with 
antioxidative defense system damage is present in 
this kind of liver damage (Table 2). The treatment 
with AGM leads to decreased NO2+NO3 
concentrations compared to control group, which 
could be explained by protective effect of AGM on the 
mechanism of secondary inflammation (30).  

The liver is an important source of GSH to the 
other peripheral tissues, so the intensive metabolism 
of xenobiotics in this organ could lead to GSH 
reduction and decline in GSH concentration in other 
peripheral tissues (31, 32). Glutathione neutralizes 
ROS within cells directly or through cycle glutathione 

peroxidase/GSH (33). Significant reductions in total 
GSH concentration 15 days after subacute CPZ 
administration in the liver  compared to the controls is 
consistent with the results of the research groups from 
other laboratories (3, 4).  

Catalase can protect living organisms from 
oxidative damage by the removal of partially reduced 
oxygen species (34). The highest activity of CAT is 
present in the liver. One group of authors showed 
that CPZ administration in rats affected the activity of 
antioxidant enzymes (SOD and CAT) in liver tissue 
(35). At a dose-dependent manner CPZ leads to 
structural changes and modifications of membrane 
permeability of endothelial cells, which affects 
hemodynamic resistance vessels in vivo (36). Also, 
CPZ has prooxidant effects and acts through the 
operation of its metabolites, which are involved in the 
formation of H2O2 by the process of autoxidation  (37).  
In addition to the protective effects against other 
oxygen radicals (OH• or O2•-), CPZ is not involved in 
the removal of H2O2 (35). Fifteen days of CPZ 
application led to the decreased CAT activity in the 
liver compared to the control group (Table 2). This 
result could direct toward the mechanism of 
activation of hepatic stellate cells and Kupffer cells’ 
proinflammatory response, which is involved in the 
development of inflammation and fibrosis (38). In our 
study, 15 days after subacute CPZ application,  there 
was no difference in positivity of  ED1 cells compared 
to the CPZ+AGM, as well as AGM group of animals 
on tissue sections of the rat liver. On the basis of the 
electrophoretic profiles of the ED1 molecules in the 
liver, we found clear differences in the level of 
expression of the protein, which were the most 
pronounced in the control group compared to all 
other groups 15 days after the treatment (Figure 1).  

One explanation for the reduced antioxidant 
capacity and reduced CAT activity in the liver of rats 
after subacute CPZ application could be an increased 
CYP2E1 activity in the liver, which leads to the 
inactivation of CAT during poisoning (39). The 
treatment with CPZ+AGM after 15 days leads to an 
increase in CAT activity as compared to the CPZ-
group of animals (Table 2).  

The results of this study firstly indicate that 
treatment with AGM accomplished a protective role 
against harmful CPZ poisoning. Thus, our findings 
provide useful information about AGM, which 
significantly supressed the oxidative and nitrosative 
stress parameters and restores antioxidant defense in 
the rat liver. 
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SAŽETAK 

Metabolički putevi oštećenja izazvani hlorpromazinom (CPZ) ispitivani su praćenjem markera 
oksidativnog/nitrozativnog stresa. Cilj studije bio je ispitati hipotezu da li agmatin (AGM) smanjuje 
oksidativni/nitrozativni stres u jetri Wistar pacova 15 dana posle davanja CPZ. Sve supstance aplikovane su 
intraperitonealno (i.p.) uzastopno 15 dana. Životinje su podeljene u četiri grupe: kontrolna (C, 0,9 % 
fiziološki rastvor), CPZ (CPZ, 38,7 mg/kg TM), CPZ+AGM (AGM, 75 mg/kg TM odmah nakon CPZ, 38,7 
mg/kg TM i.p.) i AGM (AGM, 75 mg/kg TM). 

Pacovi su žrtvovani dekapitacijom 15 dana nakon tretmana. Koncentracija CPZ je u CPZ grupi 
značajno povećana u poređenju sa kontrolnim vrednostima (p<0,01), dok tretman AGM-om dovodi do 
značajnog smanjenja koncentracije CPZ u CPZ+AGM (p<0,05) i AGM grupi (p<0,01). Aplikacija CPZ zdravim 
životinjama ne dovodi do promene koncentracije TBARS u jetri pacova u poređenju sa kontrolom, međutim, 
tretman AGM-om smanjuje koncentraciju ovog parametra u poređenju sa CPZ grupom (p<0,05). U 
homogenatima jetre CPZ grupe, koncentracija nitrita i nitrata je povećana u poređenju sa kontrolom 
(p<0,001) i tretman AGM-om smanjuje ovaj parametar u CPZ grupi (p<0,05), kao i u AGM grupi (p<0,001). 
Kod CPZ pacova smanjena je koncentracija glutationa, kao i aktivnost katalaze u poređenju sa C 
vrednostima (u svakoj grupi p<0,01), dok tretman AGM-om povećava aktivnost katalaze u poređenju sa CPZ 
životinjama (u svakoj grupi p<0,05). Western blot analiza prati biohemijske nalaze u svim grupama. Naši 
rezultati su pokazali da AGM smanjuje parametre oksidativnog/nitrozativnog stresa i oporavlja 
antioksidativni kapacitet u jetri pacova. 

Ključne reči: agmatin, antioksidativna odbrana, hlorpromazin, jetra, oksidativni stres 
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