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Mancozeb, as a dithiocarbamate fungicide, is widely used in agriculture due to its low 

acute toxicity and short environmental persistence. We examined the protective role of 
curcumin on Mancozeb-induced toxicity in rat thymocytes and potential mechanisms involved.  
Rat thymocytes were exposed to Mancozeb (0.01 μg/ml) and/or curcumin (0.3, 1, 3 μM) and 
levels of cell viability, caspase-3, caspase-9 activity, cytochrome C oxidase, catalase activity, 
reactive oxygen species (ROS) production and p53 signaling involvement were evaluated after 
24 h of incubation. Cells treated with Mancozeb showed increased toxicity, caspase-3, 9 activity 
and ROS production with decreased cytochrome C oxidase and catalase activity. Inhibition of 
caspase-3 and 9 activity resulted with reduced rat thymocytes toxicity while inhibition of p53 
signaling pathway suppressed caspase-3 activity in cells. Co-treatment with curcumin (1, 3 μM) 
displayed significantly reduced toxicity, caspase-3, 9 activity and ROS production, together with 
increased cytochrome C and catalase activity in cells. These findings propose that Mancozeb-in-
duced apoptosis in rat thymocytes is caspase dependent and is partially attributed to p53 sig-
naling pathway. Certain curcumin concentrations may modulate Mancozeb-induced rat thymo-
cytes toxicity, due to its anti-oxidative effect, and may be useful for providing potential thera-
peutic strategy in immunomodulation induced by Mancozeb. 
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Introduction 
 
The application of pesticides represents the 

most effective means of protecting plants without 
causing much damage to non-target species. How-

ever, humans are often exposed to pesticides thro-
ugh persistent bio-accumulative residues in the en-
vironment (1) which may lead to increased risk of 
adverse health effects, including genotoxicity and 
cancer (2). Mancozeb is a broad-spectrum fungicide 
of the ethylene-bis-dithiocarbamate (EBDC) family. 
Despite various studies which reported toxic effects 

of Mancozeb in different immune cells (1, 3, 4, 5), 
this fungicide has been widely used globally due to 
its low acute toxicity and short environmental persi-
stence (6). Continuous exposure to pesticides raises 
the risk of immunomodulation (7). Earlier studies 
showed that occupational exposure to Mancozeb re-
sulted with modulated T cell functional response and 

alterations in Th1 and Th2 cytokines profiles (6, 8). 
In vitro experiments suggested that Mancozeb mainly 
targets mitochondrial enzymes (9) and induces rea-
ctive oxygen formation with resulted cytotoxicity (3). 

Curcumin is a polyphenol derived from the 
rhizome of the plant Curcuma longa and has been a 
commonly used seasoning spice and medical plant 

in Asia for thousands of years. Due to its anti-inflam-
matory and anti-oxidant properties, curcumin has 
been proposed as a potential candidate for the pre-
vention and treatment of different diseases (10, 11). 
Moreover, several reports demonstrated that curcu-
min, under in vitro conditions, stimulated apoptosis 

and inhibited proliferation in different cancer cells 
(12, 13). It has been considered that mechanism for 
anti-cancer effect of curcumin includes its inhibition 
of multiple signaling pathways and anti-oxidant pro-
perty (14). On the other hand, some studies demon-
strated cytotoxic effects of curcumin (15), suggest-
ing that the specific mechanisms of curcumin induc-

ed cytotoxicity remains controversial due to the vari-
able anti and pro-apoptotic signaling pathways in 
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different cell types (16). Therefore, in the present 

study we evaluated the effect of Mancozeb in rat 

thymocytes and tested whether there is any pre-
ventive role of curcumin, along with underlying me-
chanisms involved. 

 
Materials and methods 

 
Animals 
 
Experiments were performed on adult male 

Wistar rats (190-220 g), 9-11 weeks old, bread at 
the Vivarium of the Institute of Biomedical Research, 
Medical Faculty, Niš, under conventional laboratory 

conditions and in accordance with national animal 
protection guidelines. All procedures were performed 
in line with the recommendations for the proper use 

and care of laboratory animal and confirmed to the 
European Communities Council Directive of Novem-
ber 1986 (86/609/EEC).  

 

Materials 
 
Culture medium (CM) was prepared using 

RPMI 1640 (Sigma-Aldrich, St. Louis, 16 Mo., USA) 
according to the manufacturer’s instructions. CM 
contained 25 mM HEPES, 2 mM glutamine, penicillin 

(100 U/ml), streptomycin (100 μg/ml) and 10 % fe-
tal calf serum (FCS). 

Cell Counting Kit (CCK-8), Cytochrome C Oxi-
dase Assay kit, Catalase Assay, Pifithrin-α hydro-
bromide (PFT-α Kit), Z-VAD-FMK, Z-LEHD-FMK and 
Curcumin were purchased from Sigma-Aldrich (St. 

Louis, Mo., USA). Caspase-3 colorimetric assay and 

caspase-9 colorimetric assay were obtained from R&D 
Systems (Minneapolis, USA). Mancozeb was pur-
chased from Galenika-Fitofarmacija a.d., Belgrade, 
Serbia. 

 
Preparation of thymocytes 
 

Rat thymocytes were isolated as described 
previously (17). The viability of the isolated cells, as 
determined by trypan blue dye exclusion test, was 
always over 94 %. Isolated thymocytes were count-
ed and adjusted to a density of 1x106 cells/ml. 

 

Cell culture 
 

Isolated rat thymocytes were cultivated in 96-
well round-bottom plates (NUNC, Aarhus, Den-
mark), containing a 100 μl of cell suspension (1x105 
cells) in each well. Cells were cultured with Manco-
zeb (0.01 μg/ml) without or with increasing concen-

trations (0.3, 1, 3 μM) of curcumin. Control cells 
were treated with appropriate amounts of vehicle 
alone, diluted in CM. All cell cultured are done in tri-
plicates and cultivated for 24 h in an incubator 
(Galaxy, Wolf Laboratories, USA) with 5 % CO2 at 
37°C. When indicated, rat thymocytes were cultured 
in either the presence or absence of Cyclic Pifithrin-α 

hydrobromide (PFT-α), an inhibitor of p53 protein, at 
a final concentration of 20 μM (18), Z-VAD-FMK, a 
pan-inhibitor of caspases, at final concentration of 

10 μM (19) or Z-LEHD-FMK, caspase-9 inhibitor, at 

final concentration of 20 μM (20). Mancozeb soluti-

ons were prepared immediately before use in dime-
thyl sulfoxide (DMSO) and diluted in CM. Control cells 
were treated with the same amount of vehicle alone. 
The final DMSO concentration never exceeded 0.5 % 
(v/v). Based on the results in our revious study (4), 

regarding the dose dependent toxicity in rat thymo-
cytes induced by Mancozeb, as well as on proposed 
acceptable daily intake (0.05 mg/kg body weight) of 
Mancozeb in humans (21), in our experiment we 
used 0.01 μg/ml of Mancozeb which corresponds to 
an in vivo exposure 0.1 mg/kg body weight (3, 22). 

Curcumin was dissolved in DMSO as a stock 

solution. The stock solution was stored at -20°C and 
diluted in CM before use. The final concentration of 
DMSO, applied to the cells, was less than 0.5 %. In-

cubation of increasing concentrations of curcumin 
(0.3, 1, 3 μM) was chosen due to our recently pub-
lished findings (5) and previous study results in rat 
thymocytes (23), which showed that 3 μM was the 

lowest concentration which was not able to induce 
any cytotoxic actions in rat thymocytes. 

 
Analysis of cell viability 
 
Cell viability of rat thymocytes, after cultiva-

tion period, was evaluated by CCK-8 assay as it was 
previously described (24). Ten microliter of reaction 
mixture was added in each well. After 2h of incuba-
tion, the solubilized formazan product was quantified 
spectrophotometrically. Absorbance was measured 
at 450 nm. For each sample, basal intensity values 

were subtracted from those obtained after different 

treatments. Absorbances were presented as a ratio 
of control for further comparison. 

 
Caspase-3 and caspase-9 activity assay 
 
The enzymatic activity of the caspases were 

determined by a colorimetric assay (by using the 

chromogenic substrate DEVD-pNA and LEHD-pNA), 
according to the manufacturer’s protocol. The reac-
tion was measured by determining the change in ab-
sorbance at 405 nm. The activity was expressed as 
fold change of treated cell over the non-treated cells. 
The background values were subtracted from the 

experimental results before calculation the fold in-
duction. 

 
Cytochrome C oxidase activity 
 
The change in cytochrome c oxidase activity 

was assayed by using colorimetric kit following the 

manufacturer’s protocol and as previously reported 
(25). The method is based on observing the decre-
ase in absorbance at 550 nm of ferrocytochrome c, 
which is caused by its oxidation to ferricytochrome c 
by cytochrome c oxidase. The activity was express-
ed as fold change of treated cell over the non-treat-
ed cells (25). The background values were subtract-

ed from the experimental results before calculation 
of the fold induction. 
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Catalase assay 

 

Catalase (CAT) enzyme activity was analyzed 
with Catalase Assay Kit. The assay was performed 
following the manufacturer’s instructions. The CAT 
degrades H2O2 to water and molecular oxygen and 
the amount of degraded H2O2 is proportional to the 

enzymatic activity. The color change of reaction mix-
ture was evaluated spectrophotometrically at 240 nm 
and activity was expressed as fold change of treated 
cell over the non-treated cells. 

 
Measurement of intracellular reactive oxygen 

species (ROS) production 

 
A redox-sensitive probe (H2DCF-DA) was used 

to determine changes in overall cellular ROS levels, 

as described previously (4). The change in fluoresce-
nce was measured using a Epics XL flow cytometer 
(Coulter, Krefeld, Germany). Basal inten-sity values 
were subtracted from the experimental results 

before calculation the fold induction. 
 
Statistical analysis 
 
Results are presented as mean ± SD. The 

comparisons among groups were carried out using 

the analysis of variance (ANOVA) coupled to the 

Dunnett’s post hoc test and student’s t test. A p 

value < 0.05 was considered significant. 
 
Results 
 
Based on the results of our recently published 

study (5) where we optimized curcumin dose and 
previous study results in rat thymocytes (23), we 
found that 3 μM was the lowest concentration which 
was not able to induce any cytotoxic actions in rat 
thymocytes. Therefore, we used 0.3, 1 and 3 μM cur-
cumin in all of the experiments in this study. 

In an attempt to determine the effect of cur-

cumin on Mancozeb treated rat thymocytes, cells 
were exposed to the increasing curcumin concentra-
tions (0.3, 1, 3 μM) and/or Mancozeb (0.01 μg/ml) 

for 24 h and assayed for cell viability. The obtained 
results showed that cells treatment with Mancozeb 
resulted with significantly reduced cell viability (p < 
0.01), compared to the control cells (Graph 1). Co-

treatment with curcumin, at concentrations of 1 and 
3 μM significantly (p < 0.05) inhibited cell toxicity in-
duced by Mancozeb. On the other hand, lowest cur-
cumin concentrations (0.3 μM), used in our study, 
failed to restore rat thymocytes viability after treat-
ment with Mancozeb (Graph 1). 

 
 
 
 

 
 

Graph 1. Effect of Mancozeb (Man) and curcumin (Cur) on rat thymocytes toxicity 

 
 
Cells were treated with Man (0.01 µg/ml) without or with increasing Cur (0.3, 1 and 3 µM), for 24 hours. Data were 
expressed (mean ± SD) as the absorbance ratio of control for further comparison. Man-cells treated only with Man;  
0.3 μMCur-cells treated with Man and Cur (0.3 μM);  
1 μMCur-cells treated with Man and Cur (1 μM); 3 μMCur-cells treated with Man and Cur (3 μM); ##-p < 0.01 vs. control 
cells; *-p < 0.05 vs. Man treated cells. 

 

 
 
 



Effect of curcumin and p53 signaling pathway in rat thymocytes toxicity...                                                        Voja Pavlović et al. 

138 

It has been shown that caspase is a key exe-

cutioner of apoptosis (26). Since our previous results 

(4, 5) demonstrated that Mancozeb-induced toxicity 
in rat thymocytes involves apoptotic cell death, we 
next investigated whether caspases play an import-
ant role in Mancozeb-induced toxicity. As shown in 
Graph 2, caspase-3 (p < 0.01) and caspase-9 (p < 

0.05) activity were markedly increased by a 24h 
Mancozeb treatment, suggesting that caspases are 

intimately involved in this model of cytotoxicity. Also, 

co-treatment cells with curcumin (1, 3 μM) signifi-

cantly downregulatedcaspase 3 (p < 0.05; p < 0.01) 
and caspase-9 (p < 0.05) activity, indicating the 
protective role of curcumin in Mancozeb-induced to-
xicity in rat thymocytes. Application 0.3 μM of cur-
cumin in rat thymocytes culture resulted in no signi-

ficant reduction of caspase-3 and caspase-9 activity 
(Graph 2). 

 
 
 
 

 
 

Graph 2. Effect of Mancozeb (Man) and curcumin (Cur) on caspase-3 and caspase-9 activity in rat thymocytes 

 
 
Cells were treated with Man (0.01 µg/ml) without or with increasing Cur (0.3, 1 and 3 µM), for 24 hours.  
Data were expressed (mean ± SD) as the absorbance ratio of control for further comparison.  
Man-cells treated only with Man; 0.3 μMCur-cells treated with Man and Cur (0.3 μM); 1 μMCur-cells treated with Man and 
Cur (1 μM); 3 μMCur-cells treated with Man and Cur (3 μM); #-p < 0.05; ##-p < 0.01 vs. control cells; *-p < 0.05; **-p < 
0.01 vs. Man treated cells. 
 
 
 
 

To further elucidate the involvement of cas-

pase-3 and caspase-9 in Mancozeb-induced toxicity 

in rat thymocytes, cells were simultaneously treated 
with Mancozeb and Z-VAD-FMK (a pan-inhibitor of 
caspases) or Z-LEHD-FMK (specific caspase-9 inhibi-
tor). Caspase-3 activity was markedly inhibited in 
cell treated with Z-VAD-FMK (p < 0.05) and Z-
LEHD-FMK (p < 0.01), proposing that Mancozeb-in-

duced toxicity in ratthymocytes involves caspase de-
pendent toxicity (Graph 3A and 3B). Since caspase 
inhibitors were not able to completely inhibit cas-
pase-3 activity in rat thymocytes, further analyses 
are required to evaluate the possibility that Man-
cozeb-induced toxicity may be caspase independent. 

The tumor suppressor p53 has been related 

to different key cellular processes, including the re-

gulation of apoptotic cell death (27, 28). Different 
reports propose crosstalk between p53 and caspases 
in apoptosis induction in various cells (26, 29). There-
fore, we next examined the potential role of p53 in 
Mancozeb-induced cytotoxicity. In response to co-
treatment with Mancozeb and PFT-α (an inhibitor of 

p53 protein) caspase-3 activity was significantly do-
wnregulated (p < 0.05), indicating the involvement 
of p53 in Mancozeb-induced toxicity in rat thymo-
cytes (Graph 3C). Taking into account that the res-
cue was not complete, we are not able to neglect 
the activation of other multiple signaling pathways. 
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Graph 3. Effect of Mancozeb (Man) and Z-VAD-FMK (pan-inhibitor of caspases) (A), Z-LEHD-FMK (caspase-9 inhibitor) (B), 

PFT-α (inhibitor of p53 protein) (C) on caspase-3 activity and toxicity in rat thymocytes 

 
 
Cells were treated with Man (0.01 µg/ml) without or with Z-VAD-FMK, Z-LEHD-FMK, PFT-α, for 24 hours.  
Data were expressed (mean ± SD) as the absorbance ratio of control for further comparison.  
Man-cells treated only with Man; 0.3 μMCur-cells treated with Man and Cur (0.3 μM); 1 μMCur-cells treated with Man and 
Cur (1 μM); 3 μMCur-cells treated with Man and Cur (3 μM); #-p < 0.05; ##-p < 0.01 vs. control cells; *-p < 0.05 vs. Man 
treated cells. 
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Graph 4. Effect of Mancozeb (Man) and curcumin (Cur) on cytochrome C oxidase (A) catalase activity (B) and  
ROS production (C) in rat thymocytes 

 
 
Graph 4. Effect of Mancozeb (Man) and curcumin (Cur) on cytochrome C oxidase (A) catalase activity (B) and ROS 
production (C) in rat thymocytes. Cells were treated with Man (0.01 µg/ml) without or with increasing Cur (0.3, 1 and 3 
µM), for 24 hours. Data were expressed (mean ± SD) as the absorbance ratio of control for further comparison. Man-cells 
treated only with Man; 0.3 μMCur-cells treated with Man and Cur (0.3 μM); 1 μMCur-cells treated with Man and Cur (1 μM); 
3 μMCur-cells treated with Man and Cur (3 μM); ##-p < 0.01 vs. control cells; *-p < 0.05 vs. Man treated cells. 

 



Acta Medica Medianae 2019, Vol.58(2)                            Effect of curcumin and p53 signaling pathway in rat thymocytes toxicity... 

141 

Since different studies revealed that activity 

of cytochrome C oxidase activity is closely related to 

the cell death (30, 31), we next evaluated whether 
Mancozeb and curcumin treatment had any effect on 
cytochrome C oxidase activity in rat thymocytes. 
The results showed that cells exposure to Mancozeb 
resulted in significantly decreased (p < 0.01) cyto-

chrome C oxidase activity, after 24 of incubation 
(Graph 4A). Simultaneously, co-treatment with cur-
cumin (1, 3 μM) significantly restored (p < 0.05) cy-
tochrome C activity in rat thymocytes, as evaluated 
by colorimetric assay (Graph 4A). 

Based on the previous results and because 
catalase activity may protect rat thymocytes from 

oxidative injury and apoptosis (17), in next expe-
riments we examined the effect of Mancozeb and 
curcumin on catalase (CAT) activity in rat thymo-

cytes. As shown in Graph 4B, Mancozeb application 
to cell culture markedly reduced (p < 0.01) catalase 
activity in rat thymocytes. Also, colorimetric assay 
revealed that treatment with curcumin (1, 3 μM) 

significantly restored (p < 0.05) altered catalase ac-
tivity in rat thymocytes, induced by Mancozeb (Graph 
4B). Moreover, the analysis of ROS production show-
ed that Mancozeb treatment induced significantly (p 
< 0.01) increased ROS production while application 
of curcumin (1, 3 μM) reduced (p < 0.05) ROS pro-

duction in rat thymocytes (Graph 4C). 

 
Discussion 

 
Curcumin has been used in traditional Indian 

and Chinese medicine for centuries due to its various 
therapeutic properties. Extensive in vivo and in vitro 
studies showed that curcumin has a number of bio-
logical activities (32, 33), including the increasing of 
T cell proliferation and inhibition of T cell apoptosis 
(34). 

The current study results demonstrate that 
Mancozeb application in cell culture decreased viabi-
lity and increased caspase-3 and caspase-9 activity 
in rat thymocytes, as evaluated by colorimetric as-
say. The obtained results correspond with our inhi-
bition experiments which showed that Z-VAD-FMK 
(a pan-inhibitor of caspases) almost restored viabi-
lity of the cells while Z-LEHD-FMK (specific caspase-
9 inhibitor) strongly suppressed caspase-3 activity in 
rat thymocytes, indicating that the caspase cascade 
is involved in Mancozeb-induced cytotoxicity. These 
observations are in accordance with our previous re-
sults (4, 5) demonstrating the pro-apoptotic poten-
tial of Mancozeb in rat thymocytes, as well as with 
other studies in human immune cells (1, 3). More-
over, our results indicate that rat thymocytes expo-
sure to Mancozeb resulted with decreased cytochro-
me C oxidase and catalase activity, after 24h of in-
cubation. Cytochrome C oxidase represents the ter-
minal enzyme of mitochondrial respiratory chain. It 
couples electron transfer from cytochrome c to oxy-
gen to form water with transport of protons from 
matrix to cytosol thereby maintaining mitochondrial 
(MMP) membrane potential. Furthermore, since this 
enzyme induces proton transfer and electron ex-
change takes place within the enzyme, reactive oxy-
gen species (ROS) generation is inherently prohibit-

ed (35). It is well documented that Mancozeb pos-
sess ability to reduce MMP and induce ROS genera-
tion in immune cells (1, 4, 5), showing that mito-
chondrial dysfunction and alterations in antioxidant 
defense systems represent major components of 
Mancozeb-induced toxicity (36). During mitochon-
drial dysfunction, several key factors of apoptosis 
(procaspase, cytochrome C, apoptosis protease-acti-
vating factor 1-APAF-1) are released into cytosol. 
The complex formed of cytochrome C, APAF-1 and 
caspase-9 leads up to a chain activation of other 
caspases and results in apoptosis (5, 37). These fin-
dings correlate with increased caspase-3 and cas-
pase-9 activity in rat thymocytes, after Mancozeb 
treatment. On the other hand, our results indicated 
that CAT activity was markedly decreased in rat 
thymocytes treated with Mancozeb. Given observa-
tions are supported by the earlier reports, which in-
dicated that overexpression of CAT protect thymo-
cytes against oxidative injury and apoptosis (17). 
The decreased activity of CAT in the rat thymocytes 
indicated the altered CAT activity to degrade hy-
drogen peroxide. Increased hydrogen peroxide could 
be converted to toxic hydroxyl radicals that may 
contribute to oxidative stress and apoptosis (38). 
Taken together with our results, it seems that rat 
thymocytes exposure to Mancozeb resulted in al-
tered activities of antioxidant defense system and 
mitochondrial dysfunction which may lead to cas-
pase cascade activation and cytotoxicity. 

p53, as a tumor suppressor gene, plays a 
prominent role in the regulation of cell apoptosis 
(27). Moreover, p53 has been linked to evoking 
apoptosis by transcriptional activation of pro-apop-
totic proteins (Bax) and transcriptional repression of 
anti-apoptotic (Bcl-2) proteins (39). The present 
study showed that co-treatment with Mancozeb and 
PFT-α inhibited caspase-3 activity in cells, suggest-
ing the potential role of p53 in Mancozeb-induced 
toxicity in rat thymocytes. Activated p53 is able to 
induce the expression of Bax, MMP damage and 
activation of caspases that lead to apoptosis (40). 
These observations are in agreement with our recent 
report which documented that Mancozeb-induced 
apoptosis through mitochondrial pathway, by dis-
turbing the Bcl-2/Bax protein ratio in rat thymocytes 
(5). On the other hand, since the rat thymocytes 
were not completely rescued after PFT-α treatment, 
it suggests the involvement of another pathway 
which can be triggered by Mancozeb. Having in mind 
our previous results, it appears that Mancozeb-in-
duced toxicity in rat thymocytes may be partially 
associated with p53 signaling activation, with poten-
tial secondary immunological consequences. 

Taking into account the obtained results, we 
next tested the possibility that curcumin may mo-
dulate Mancozeb-induced toxicity in rat thymocytes. 
Present study results showed that curcumin (1, 3 
μM) markedly inhibited cytotoxicity, caspase-3 and 9 
activity, ROS production and restored cytochrome C 
oxidase and CAT activity in rat thymocytes after 
Mancozeb treatment. Curcumin (0.3 μM) failure to 
suppress Mancozeb-induced cytotoxicity is support-
ed by previous findings which proposed that cur-
cumin protective effect is mainly mediated by micro-
molar concentrations (23). The obtained findings are 
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consistent with our recently published results, indi-
cating the protective role of curcumin through mito-
chondrial pathway in Mancozeb-induced rat thymo-
cytes toxicity (5). The decline in mitochondrial respi-
ratory activity (reduced cytochrome C oxidase activi-
ty) results in an increased susceptibility to oxidative 
stress, indicating the unique crosstalk between cyto-
chrome C oxidase activity and cell death machinery 
(41). These findings correspond with inhibitory effect 
of curcumin on rOS production. In line with these 
observations, we showed that CAT activity was sup-
pressed, suggesting that there may be an imbalance 
between pro-oxidant and anti-oxidant system after 
Mancozeb treatment. The preventive effect of cur-
cumin on cytochrome C oxidase activity has been 
shown earlier (42) and here we demonstrated in rat 
thymocytes, after Mancozeb treatment. In support 
of this possibility, the protective effect of curcumin 
may also involve the promotion of mitochondrial res-

piratory function due to its anti-oxidative properties 
(42). Together with our results, we can speculate 
that protective role of curcumin in Mancozeb induced 
toxicity in rat thymocytes may be partially attributed 
to p53 inhibition, but this thesis needs additional 
studies. 

In summary, the current study results demon-
strate that Mancozeb exerts toxic effects in rat thy-
mocytes, including caspase activation, cytochrome C 
oxidase and catalase inhibition. Moreover, Manco-
zeb-induced cell toxicity may be partially mediated 
through p53 signaling pathway and restored by cer-
tain curcumin concentrations. These findings could 
potentially provide the basis of curcumin as a po-
tential therapeutic strategy for individuals exposed 
to pesticides which may suppress immunomodula-
tion and secondary immunological consequence de-
velopment. 
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Mankozeb, kao ditiokarbamatni fungicid, nalazi se u širokoj upotrebi u poljoprivredi, 

prvenstveno zbog svoje male akutne toksičnosti i kratkog poluživota u spoljašnjoj sredini. U 
našem radu ispitivali smo preventivnu upotrebu kurkumina na mankozebom indukovanu tok-
sičnost pacovskih timocita, kao i potencijalne mehanizme uključene u ovaj proces. Timociti 
pacova bili su izloženi delovanju mankozeba (0,01 µg/ml) i/ili kurkuminu u rastućim koncen-
tracijama (0.3, 1 3 µM). Varijabilnost ćelija, aktivnost kaspaze 3, aktivnost kaspaze 9, aktiv-
nost citohrom C oksidaze, katalazna aktivnost, produkcija reaktivnih kiseoničkih radikala 
(ROS) i aktivnost p53 signalnog puta ispitivani su nakon inkubacije od 24 sata. Ćelije treti-
rane mankozebom pokazale su povećanu toksičnost, aktivnost kaspaze 3 i kaspaze 9 i pro-
dukciju ROS-a, zajedno sa sniženom aktivnošću citohroma C oksidaze i sniženom katalaznom 
aktivnošću. Inhibicija aktivnosti kaspaze 3 i kaspaze 9 dovela je do smanjene toksičnosti timo-
cita pacova, dok je inhibicija p53 signalnog puta suprimirala aktivnost kaspaze 3 u ćelijama. 
Kotretman kurkuminom (1, 3 µM) pokazao je značajnu redukciju toksičnosti, aktivnosti kas-
paze 3 i 9 i produkcije ROS-a, zajedno sa povećanom aktivnošću citohroma C i povećanom 
katalaznom aktivnošću u ćelijama. Dobijeni rezultati pokazuju da je mankozebom indukovana 
apoptoza u timocitima pacova zavisna od kaspaza, kao i da se parcijalno odigrava preko p53 
signalnog puta. Odgovarajuće koncentracije kurkumina mogu modelirati mankozebom indu-
kovanu toksičnost pacovskih timocita, prvenstveno preko svog antioksidativnog efekta, što 
može predstavljati potencijalno mesto terapijske strategije u imunomodulaciji koja je indu-
kovana mankozebom. 
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