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Abstract

Molecular descriptors are a cornerstone of cheminformatics, enabling the transformation of molecular
structures into quantitative representations used in QSAR and QSPR modeling. This review offers a
comprehensive and structuredseverview of descriptor classes, spanning from zero-dimensional (0D)
constitutional and one-dimensional (1D) fragment-based to two-dimensional (2D) topological, three-
dimensional (3D) géometrical,“and four-dimensional (4D) conformational descriptors. The survey
extends to pharmacophore-based, quantum-chemical, empirical, SMILES-based, and SHAP-based
descriptors, presenting their theoretical foundations, computational methods, and relevance across
drug discovery, toxicology, and materials science. Each descriptor type is examined with respect to
the\infarmation it captures—from elemental composition and functional group patterns to spatial
configurations, electronic properties, conformational ensembles, and symbolic encodings. Emphasis
is placed on how these descriptors are computed, what structural or dynamic features they represent,
and how they contribute to predictive modeling. Special categories, such as 4D descriptors that
incorporate molecular flexibility and SHAP-based descriptors that enable model interpretability,
illustrate the field's ongoing evolution toward more informative and explainable representations. The
review also considers hybrid approaches and the incorporation of descriptors into modern machine

learning frameworks, including Monte Carlo optimization, ensemble modeling, and Al-based



prediction systems. Finally, future directions are discussed, including the development of
transferable, dynamic, and biologically contextual descriptors capable of capturing multi-scale
chemical behavior. These innovations aim to bridge theoretical precision with data-driven modeling,

enhancing both predictive performance and mechanistic insight across cheminformatics applications.
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Pregledni rad

doi:10.5633/amm.2026.0115

Molekulski deskriptori — temelj translacionog otkrivanja lekova

Aleksandar M. Veselinovi¢

Univerzitet u NiSu, Medicinski fakultet, Katedra Hemija, NisS, Srbija

Kontakt: Aleksandar M. Veselinovi¢,
Bulevar dr Zorana Dindi¢a 81, 18000 Nis, Srbija

E-mail: aveselinovic@medfak.ni.ac.rs

Molekulski deskriptori predstavljaju kamen temeljac hemoinformatike, omogucavajuéi transformaciju
molekulskih struktura u kvantitativne reprezentacije Koje se koriste u QSAR i QSPR modelovanju.
Ovaj pregled nudi sveobuhvatan i jasno strukturiran prikaz klasa deskriptora, od nula-dimenzionalnih
(OD) konstitucionih i jednodimenzionalnih (1D) fragmentnih, preko dvodimenzionalnih (2D)
topoloskih i trodimenzionalnih (3D) ‘gedmetrijskih, do ¢etvorodimenzionalnih (4D) konformacionih
deskriptora. Pregled, se dalje,proteze na farmakoforne, kvantno-hemijske, empirijske, SMILES-
zasnovane i SHAP-zasnovane deskriptore, uz predstavljanje njihovih teorijskih osnova, racunarskih
metoda i relevantnosti \u otkrivanju lekova, toksikologiji i nauci o materijalima. Svaka vrsta
deskriptora razmatra se prema informacijama koje obuhvata — od elementarnog sastava i obrazaca
funkcionalnih grupa do prostorne organizacije, elektronskih svojstava, konformacionih ansambala i
simbolickih kodiranja. Poseban akcenat stavljen je na to kako se ovi deskriptori racunaju, koje
strukturne ili dinamicke karakteristike predstavljaju i kako doprinose prediktivnom modelovanju.
Posebne kategorije, poput 4D deskriptora koji uklju¢uju molekulsku fleksibilnost i SHAP-zasnovanih
deskriptora koji omogucavaju interpretabilnost modela, ilustruju kontinuiranu evoluciju ka
informativnijim i objasnjivijim reprezentacijama. U radu se razmatraju i hibridni pristupi, kao i
ukljucivanje deskriptora u savremene okvire masinskog ucenja, ukljucujuéi Monte Karlo optimizaciju,
ansambl-modelovanje i sisteme za predikciju zasnovane na vestackoj inteligenciji. Na kraju se
diskutuje o budué¢im pravcima, ukljucujuéi razvoj prenosivih, dinamickih i bioloski
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kontekstualizovanih deskriptora sposobnih da obuhvate viSeskalno hemijsko ponasanje. Ove
inovacije imaju za cilj da premoste teorijsku preciznost i modele vodene podacima, unapredujudi i

prediktivne performanse i mehanisticki uvid u primenama hemoinformatike.

KljuCne reci: Molekulski deskriptori, QSAR/QSPR modelovanje, otkrivanje lekova, ADMET,

hemoinformatika
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Introduction

Molecular descriptors are fundamental to building Quantitative Structure-Activity Relationship
(QSAR) and Quantitative Structure—Property Relationship (QSPR) models, which are critical tools in
drug discovery, toxicology, and materials science. Originating from the seminal work of Hansch and
Fujita in the 1960s, these descriptors bridge chemical structures with numerical data, enabling
statistical and machine learning analyses (1-3). By predicting the properties of novel compounds,
descriptors streamline experimental research, reducing costs and timelines, which highlights their

increasing importance in both academic and industrial contexts (4-6).

Descriptors are numerical values derived from molecular representations,#Stich “as» Simplified
Molecular Input Line Entry System (SMILES) notations, graph-basedsencodings, connectivity
matrices, or quantum-chemical calculations. They capture diverse, ‘molecular characteristics,
including topological, geometric, electronic, steric, and pharmacophoric properties (7-14). Todeschini
and Consonni note that descriptors are not arbitrary but result from well-defined mathematical

transformations that convert chemical information into quantifiable metrics for modeling (12,13).

The development of thousands of descriptors, documented in detailed monographs and integrated
into widely used software, has significantly enhanced molecular characterization (12-14). However,
this expansion introduces challenges, stich as'descriptor redundancy, interpretability issues, and the
risk of overfitting in predictive_models."As airesult, recent studies focus not only on the variety of
descriptors but also on strategies for their careful selection, validation, and integration into advanced

machine learning frameworks to, ensure robust and reliable predictions (7-14).

The Role of Molecular, Descriptors in QSAR/QSPR Modeling

Molecularidescriptors are essential to QSAR and QSPR modeling, providing a quantitative, objective
way“te, represent molecular structures. These descriptors enable researchers to analyze and model
diverse chemical compounds without relying on specific experimental conditions, serving as the core
input for a range of modeling techniques—from traditional linear regression and stochastic methods
to advanced approaches like artificial neural networks, random forests, and XGBoost (15). By
facilitating predictions of critical properties — such as biological activity, toxicity, ADME/T profiles,
and physicochemical stability —descriptors not only support predictive modeling but also enhance

mechanistic insights by identifying structural features, such as toxicophores or pharmacophores, that



drive molecular behavior. This dual role aids rational drug design and ecotoxicological risk assessment

(16).

The evolution of molecular descriptors has closely paralleled advancements in computational
chemistry. Early descriptors focused on basic structural counts, such as the numbers of atoms, bonds,
and rings, followed by topological indices introduced by pioneers such as Wiener, Balaban, and
Hosoya. Over time, descriptors grew more complex, incorporating two- and three-dimensional
geometric properties, quantum-chemical metrics like HOMO-LUMO energies and dipole moments,
and, more recently, four-dimensional descriptors that account for conformational dynamics and
interactions with biological targets (17,18). This progression reflects a shift from®“simple®structural

metrics to descriptors capturing intricate aspects of molecular function.

Today, the field of molecular descriptors is expansive, with overy 5,000/ distinct descriptors
documented across various research domains, including comstitutional, information-theoretic,
topological, geometric, electrostatic, quantum-chemigcal, pharmacophoric, and experimentally
derived types. Software tools such as Dragon, PaDEL, RDKit, ChemDes, and alvaDesc have become
indispensable, automating the calculation of thausands of molecular descriptors from molecular
structures. While this diversity empowers predictive ‘modeling, it also poses challenges related to

redundancy, high dimensionality, and intérpretability (19,20).

Despite the rise of deep learning and/'black=box” modeling approaches, evidence underscores that
the success of QSAR/QSPR models hinges on the thoughtful selection, engineering, and interpretation
of descriptors. Wellzchosen descriptors improve model robustness and predictive accuracy while
providing meaningful ‘insights into structure-function relationships. Thus, a deep understanding of
the theoretical, basis, classification, and practical applications of molecular descriptors remains

fundamental tojadvancing QSAR and QSPR research (21-23).

Extended Categories of Molecular Descriptors

Beyond traditional categories like constitutional, topological, geometrical, and quantum-chemical
descriptors, several specialized subcategories have enriched the QSAR/QSPR modeling landscape.
These include descriptors rooted in chemical graph theory, which convert atom and bond connectivity
into precise mathematical indices; information-theoretic descriptors that quantify structural
complexity using concepts like entropy; experimentally derived descriptors from physicochemical

measurements; and pharmacophore-based descriptors that emphasize 3D configurations critical for



molecular recognition. Additionally, fragment-based descriptors, which indicate the presence or
absence of specific functional groups or substructures, provide clear insights into chemical reactivity

and biological activity, enhancing interpretability (24,25).

The vast array of descriptors available in modern cheminformatics tools, such as Dragon, PaDEL,
RDKit, ChemDes, and similar platforms, presents both opportunities and challenges. These tools can
generate thousands of descriptors from a single molecular structure, enabling robust modeling but
also introducing issues such as redundancy, collinearity, and overfitting. To address these/ feature
selection and dimensionality reduction techniques, such as Principal Component Analysis (PCA) and
Recursive Feature Elimination (RFE), have become essential in QSAR/QSPR warkflows. These
methods help identify the most informative descriptors, eliminating noise and fedundancy to improve

model robustness and interpretability (26).

Another critical aspect is the assessment of chemical similarity ingdescriptor space. For continuous
descriptors, similarity is typically measured using distance metrics like Euclidean or Mahalanobis,
often weighted by feature importance. For binary descriptors; which capture the presence or absence
of structural fragments, metrics such as the Tapimoto coefficient, Jaccard index, or Manhattan
distance are commonly used. These similarity measures are foundational to organizing chemical
libraries, navigating structure-activity relationships, and conducting virtual screening. The choice of
metric significantly impacts perceiVed melecular similarity, influencing which compounds are

prioritized for experimental®@valuation (27-29).

Zero-Dimensional (OD) Descriptors

Zero-dimensional, (0B, 'descriptors represent the simplest form of molecular characterization, relying
solely on the molecular formula and counts of constituent atoms, without considering their structural
connectivity. Examples include molecular weight, counts of specific elements (e.g., carbon, hydrogen,
nitrogen, ‘oxygen, or halogens), total atom count, elemental mass fractions, empirical formulas, and

atomig composition indices (30).

Despite their lack of information on bonding patterns or stereochemistry, 0D descriptors provide a
basic yet valuable snapshot of molecular size and elemental makeup. In applications such as early-
stage drug discovery or chemical database screening, they serve as efficient filters to eliminate
molecules outside the desired property ranges. For instance, molecular weight is a key parameter in

medicinal chemistry, integral to Lipinski’s “rule of five,” and influences pharmacokinetic properties



such as absorption, distribution, and metabolic stability. Similarly, atom counts and elemental
composition can correlate with properties such as polarity or lipophilicity, thereby impacting

membrane diffusion and overall pharmacokinetic behavior (31).

Far from being outdated, 0D descriptors remain relevant in modern cheminformatics. They are often
used as baseline variables in large-scale QSAR/QSPR datasets, complementing more complex
descriptors. Their straightforward interpretability makes them particularly useful for rapid chemical
similarity assessments or applying constraints in virtual screening. Thus, 0D descriptors demaonstrate
that even the most fundamental numerical representations of chemical composition cah, retain

significant predictive utility when integrated into comprehensive modeling frameworks (32).

Fragment-Based (1D) Descriptors

Fragment-based, or one-dimensional (1D) descriptors, are molecular encodings that capture the
presence or absence of specific functional groups, substructures, or chemical motifs. Often called
expert-based descriptors, they are grounded in established“echemical knowledge, offering a direct,
interpretable link to molecular functionality. Unlike continuous descriptors focused on size or

topology, these provide clear insights into the structural components driving molecular behavior.

Common examples include counts of functiohal gretps (e.g., carbonyls, hydroxyls, amines), aromatic
or non-aromatic rings, heteroatoms(e:g., N,.O, S, P, halogens), and rotatable bonds. The number of
rotatable bonds is particularly significant as a measure of molecular flexibility. Higher counts often
correlate with reduced oral“bioavailability, lower membrane permeability, and decreased metabolic
stability, making this descriptor a key component of Lipinski’s “rule of five,” which limits rotatable

bonds to ten or fewes. in drug-like molecules (33).

Other fragment-based descriptors offer additional insights into molecular complexity. The count of
ringsareflects, structural rigidity and planarity, influencing binding affinity and specificity to biological
targets. Heteroatoms enable directional interactions, such as hydrogen bonding or acid-base
complementarity, which are critical for defining pharmacophoric patterns and ensuring selective
molecular recognition. Similarly, the number of heavy atoms (all non-hydrogen atoms) serves as a
simple yet effective indicator of molecular mass and complexity. Molecules with higher heavy atom
counts may exhibit greater binding specificity and diverse interactions, but can face challenges like

reduced permeability or increased toxicity risks due to bioaccumulation (33).



Fragment-based descriptors strike a balance between computational simplicity and chemical
interpretability, making them highly valuable in cheminformatics. Their ease of calculation and ability
to connect structural motifs to pharmacokinetic and toxicological properties ensure their continued
relevance in QSAR/QSPR modeling. By linking molecular features to functional outcomes, these
descriptors bridge numerical modeling with chemically intuitive insights, enhancing both predictive

accuracy and mechanistic understanding (34).

Two-Dimensional (2D) Descriptors

Two-dimensional (2D) molecular descriptors are a cornerstone of QSAR and)QSPRf modeling,
capturing the topological structure of molecules based on atom connectivity, iAdependent of their
three-dimensional conformation (13,14). Rooted in graph theory, theseydescriptors represent
molecules as graphs, G=(V,E), where vertices (V) denote atoms andsedges (E) represent chemical
bonds. This abstraction enables quantitative analysis of struetural features like chain length,
branching, cycles, aromatic systems, heteroatom placement,,and multiple bond distributions,
transforming chemical intuition into mathematical indices.\Admajor strength of 2D descriptors is their
utility when three-dimensional conformations are unavailable, making them ideal for high-throughput
virtual screening and database mining. Theirfrapid computation, without the need for geometrical

optimization, ensures their prominence in cheminformatics workflows (12).

The development of topological descriptars reflects a progressive formalization of chemical structure.
The Wiener index (W), ofie of the earliest measures, calculates the sum of shortest path lengths
between all atom paits in a molecular graph. Linear molecules yield higher W values, while branching
reduces them, i/making branching effective for predicting properties such as boiling points, melting
points, lipophilicity(logP), toxicity, and biodistribution. Extensions like the Hyper-Wiener index (WW),
which incorporates’distances and their squares, and the Modified Wiener index (W*), which weights
central, bonds, enhance sensitivity to local structural variations and are particularly useful in

pharmacophore modeling and reactivity studies (17,35).

The Randi¢ index (X), or connectivity index, quantifies branching by using reciprocal values of
adjacent atom degrees, emphasizing terminal or less-connected atoms. Its extensions, incorporating
atomic properties such as valence, electronegativity, and polarizability, enable predictions of
pharmacokinetic and pharmacodynamic properties, including logP, membrane permeability, toxicity,

and receptor selectivity. The Kier—-Hall indices, higher-order extensions of the Randi¢ concept, analyze



connectivity patterns across multiple levels, capturing shape, symmetry, and centrality, and are

effective in distinguishing structural isomers and modeling ligand-receptor interactions (35).

The Balaban index (J) normalizes average topological distances by the number of bonds and cycles,
enabling comparisons across molecules of varying sizes. Its robustness makes it valuable for
predicting ADMET-related properties in diverse chemical datasets, with applications in medicinal

chemistry and toxicology (36,37).

Other indices further enrich 2D descriptor applications. The Zagreb indices (M1 and M2) use atomic
degrees to quantify electronic density distribution and molecular flexibility. The Augmented)Zagreb
Index (AZI) accounts for specific bond types and excels at modeling complex, multicentrigstructures.
The Hosoya index (Z) counts independent edge pairs, showing sensitivitysto,cyeles and branching,
while its modified version (Z*) is tailored for carbon-rich frameworksywith local symmetries. The
Szeged index (Sz) refines topological distance by partitioning .atems around each bond, offering
superior accuracy for systems with local asymmetry orgunevenimass distribution compared to the

Wiener index (38).

2D topological descriptors demonstrate the power of connectivity-based encodings to capture
essential molecular architecture. Their computational efficiency, broad applicability, and proven
predictive accuracy ensure their enduring role in QSAR/QSPR modeling, even as more complex three-
and four-dimensional descriptors emerge. By providing a balance of simplicity and insight, these
descriptors remain indispensable for understanding and predicting molecular behavior across diverse

chemical and biological contexts.

SMILES-Based Descriptors in QSAR/QSPR Modeling

SMILES-based'descriptors represent a unique and innovative approach in QSAR and QSPR modeling,
leveraging the SMILES to transform linear string notations into predictive numerical features. Unlike
traditional descriptors that rely on explicit geometric, topological, or physicochemical
representations, SMILES-based descriptors directly utilize the text-based molecular graph encoded
in SMILES, offering a seamless bridge between symbolic chemical representations and quantitative

modeling (39).

The core of SMILES-based descriptors lies in decomposing the SMILES string into smaller fragments,
such as sequences representing specific atoms, bond types, ring closures, or functional groups. Each

fragment is assigned a numerical weight, which is iteratively optimized using Monte Carlo techniques
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to maximize correlation with the target endpoint, such as biological activity or physicochemical
property. The CORAL software has been instrumental in formalizing this methodology, employing
stochastic optimization to adjust correlation weights and build robust predictive models by balancing
training and validation datasets. This process ensures that the descriptors are both predictive and

computationally efficient (40,41).

A key advantage of SMILES-based descriptors is their versatility and scalability. As SMILES is a
standardized notation widely adopted in cheminformatics databases, these descriptors can be rapidly
calculated for large chemical libraries without requiring detailed 2D or 3D structural data. This
computational simplicity makes them particularly valuable for early-stage virtual ‘screenifng, where
speed and scalability are critical. Moreover, their interpretability enhances ‘their utility individual
SMILES fragments can be directly linked to structural motifs that drive r¢inder the modeled
property, facilitating mechanistic insights into structure-activity or structure-property relationships.
SMILES-based descriptors are categorized into local and global types. Local descriptors focus on
specific fragments within the SMILES string, such as “"C=0" fomearbonyl groups, “-NH-" for amines,
or “clcccccl” for benzene rings, enabling precise identification of substructures that influence the
target property. This granularity supports the_recegnition of pharmacophores or toxicophores,
enhancing the interpretability of QSAR/QSPR models. Global descriptors, in contrast, consider the
entire SMILES sequence, capturing  .the | cumulative effect of all fragments and their
interdependencies. This holistic.approachycontributes to model robustness and stability, particularly
in Monte Carlo optimization.and/CORAL-based frameworks, where the combination of local and global

descriptors balances/predictivetaccuracy with mechanistic clarity (40,41).

An advanced, development in this domain is the introduction of quasi-SMILES descriptors, which
extend _the standard SMILES notation by incorporating non-structural information, such as
experimental conditions, solvents, or formulation parameters. By embedding contextual metadata,
quasi-SMILES descriptors enable predictions of not only intrinsic molecular properties but also
system-level behaviors influenced by environmental factors. This innovation broadens their
applicability across fields such as medicinal chemistry, ecotoxicology, and nanomaterials research,

where external conditions significantly influence outcomes (42).

SMILES-based descriptors have proven robust across diverse endpoints, including physicochemical
properties like partition coefficients and solubility, toxicological outcomes such as mutagenicity and

aquatic toxicity, and pharmacological activities. In many instances, models built with SMILES
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descriptors match or surpass those using traditional 2D or 3D descriptors, particularly when paired
with Monte Carlo optimization, which systematically explores descriptor space while minimizing
overfitting. From a broader perspective, SMILES-based descriptors embody a key principle in
cheminformatics: symbolic representations, when mathematically formalized, can yield powerful
predictive models without the need for resource-intensive structural calculations. As cheminformatics
increasingly integrates with big data, text mining, natural language processing, and machine
learning, the role of SMILES and quasi-SMILES descriptors is poised to grow, offering a
computationally efficient and interpretable approach to molecular modeling in an era of.expanding

data-driven research (40,41).

Physicochemical Descriptors in QSAR/QSPR Modeling

Physicochemical descriptors quantify essential physical and chemical“properties of molecules,
typically derived from two-dimensional (2D) structural data.sThese descriptors are pivotal in
evaluating the pharmacokinetic profiles of drug candidates, as they encode attributes that dictate a
compound’s behavior in biological systems. Key examplesdinclude lipophilicity, aqueous solubility,

permeability, molecular weight, and counts of hydrdgen bond donors and acceptors (42).

Lipophilicity, a critical descriptor, measures a8 compound’s affinity for lipid environments and
influences pharmacokinetic processes Such as passive membrane transport, intestinal absorption,
plasma protein binding, tissue_distribdtion, “and intracellular bioavailability. Suboptimal lipophilicity
can lead to poor absorption, reduced oral bioavailability, or limited penetration across barriers like
the blood-brain barrier. Conversely, excessive lipophilicity may lead to poor aqueous solubility, non-
specific bindinggand increased metabolic clearance, posing a key challenge for achieving an optimal

balance in drug,design.

Studies, both“in witro and in silico, highlight the interplay between lipophilicity and other molecular
propertiesuincluding size, polarity, hydrogen-bonding capacity, and ionization state. For instance, a
high number of hydrogen bond donors increases polarity, potentially hindering absorption, while
elevated molecular weight often correlates with reduced membrane permeability and impaired
transport. Aqueous solubility, another vital descriptor, determines a compound’s availability in free
form for pharmacological action and elimination. Insufficient solubility can limit efficacy and

complicate formulation development (43).
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Physicochemical descriptors offer a dual benefit: they serve as robust predictors of drug efficacy and
safety, guiding lead optimization toward compounds with favorable ADMET (Absorption, Distribution,
Metabolism, Excretion, and Toxicity) profiles, and they can be calculated directly from molecular
structures without experimental data. This computational efficiency makes them invaluable for large-
scale virtual screening and early-stage predictions, enabling rapid evaluation of thousands of

compounds before resource-intensive experimental testing.

By bridging fundamental chemical principles with practical drug design, physicochemical descriptors
combine interpretability with predictive power for ADMET outcomes. Their continued prominence in

QSAR and QSPR modeling underscores their essential role in modern cheminformatics (44Y.

Quantum-Chemical Descriptors in QSAR/QSPR Modeling

Quantum-chemical descriptors stand at the forefront of modenh cheminformatics, offering a
sophisticated means of capturing the electronic properties of malecules, which significantly enhances
the interpretability and physiological relevance of QSAR andaQSPR models. Unlike traditional two-
dimensional or three-dimensional descriptors that focus on geometry or topology, these descriptors
provide direct insight into electronic characteristics, enabling predictions of binding affinity,
selectivity, and reactivity while offering a mechanistic understanding of molecular behavior in

biological systems (45).

Historically, the application of quantum-chemical descriptors was constrained by high computational
costs, limiting early studies todsemi-empirical methods like AM1 and PM3. Advances in computational
power and software have shifted the preference toward density functional theory (DFT), which strikes
an optimal balancesbetween accuracy and efficiency. Hybrid functionals, such as mPW1PW91 and
B3LYP, have become particularly effective, delivering reliable estimates of electronic density, charge

distribution, and)total system energy without excessive computational demands (46).

Amorg the most significant quantum-chemical descriptors are the energies of frontier molecular
orbitals, specifically the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO). Rooted in frontier molecular orbital theory, these descriptors are critical for
estimating ionization potential, electron affinity, and overall chemical reactivity. The HOMO energy
indicates a molecule’s tendency to donate electrons, while the LUMO energy reflects its capacity to
accept them. The HOMO-LUMO gap, the energy difference between these orbitals, serves as a key

indicator of kinetic stability and reactivity. Derived properties, such as hardness, softness,
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electronegativity, and electrophilicity, further extend these insights within the Hard and Soft Acids
and Bases (HSAB) framework, providing a rational basis for predicting molecular selectivity and

reaction pathways (47).

Another vital category includes partial atomic charges, calculated using methods such as Mulliken,
Natural Population Analysis (NPA), or Merz-Kollman. These charges facilitate modeling of
electrostatic interactions, prediction of hydrogen-bonding patterns, and assessment of electrostatic
complementarity in protein-ligand interactions. Related properties, such as dipole moment and
polarizability tensors, describe a molecule’s response to external fields and contribute to

understanding van der Waals forces, dispersion interactions, and solvation effects {48).

Quantum-chemical calculations also yield thermodynamic parameters,gincluding enthalpy, free
energy, and heat capacity, as well as specialized descriptors suchgas “protenation energies and
quadrupole moments. These parameters not only enhance predictive modeling but also provide
mechanistic explanations for processes such as proton,transfer, tautomerism, and noncovalent
binding, enriching the understanding of molecular interactions. The true strength of quantum-
chemical descriptors lies in their ability to integrate structural, electronic, and reactivity-related
information into a unified framework. This dual role, serving as both predictive tools and conceptual
bridges between molecular structure and"mechanism of action, makes them indispensable in drug
design and molecular modeling. By eé@mbining predictive accuracy with explanatory depth, quantum-
chemical descriptors solidify‘their position as critical tools at the intersection of theoretical chemistry

and practical applications in“"cheminformatics (49,50).

Three-Dimensional (3D) Molecular Descriptors in QSAR/QSPR Modeling

Three-dimensional (3D) molecular descriptors go beyond the limitations of two-dimensional
topological descriptors by incorporating the spatial arrangement of atoms within a molecule, offering
a richer perspective on a molecule's geometric and steric properties. These descriptors provide critical
insights into biological activity by directly connecting a molecule’s spatial structure to
pharmacological behaviors such as receptor binding, membrane permeability, and drug-target
interactions. Unlike their 2D counterparts, which rely solely on atomic connectivity, 3D descriptors
capture intricate details like molecular volume, surface area, shape, orientation, and spatial
interactions, making them essential for understanding complex molecular recognition processes that

underpin biological responses (51).
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The computation of 3D descriptors begins with geometric optimization of molecular structures,
typically performed using quantum-chemical methods like PM6 or DFT, or molecular mechanics
approaches such as MMFF94. These optimized atomic coordinates serve as the foundation for
calculating a wide array of parameters, including molecular volume, solvent-accessible surface area,
bond lengths, bond angles, torsional angles, and measures of molecular rigidity or flexibility. This
ability to account for conformational variability is particularly valuable for molecules that can adopt
multiple low-energy conformations, as the bioactive conformation often determines) the

pharmacological outcome (52).

Among the most prominent surface-related descriptors is the polar surface area, defined as the
cumulative surface contributions of polar atoms, such as oxygen and nitrogen, along with their
attached hydrogens. This descriptor is a powerful predictor of oral bioavailabilitytand blood-brain
barrier penetration, with well-established empirical thresholds that guide medicinal chemists in

refining molecular scaffolds to optimize absorption and distribution properties (53).

Significant advancements in 3D descriptor methodologies have come through grid-based approaches,
notably Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices
Analysis (CoMSIA). These methods project mioleculesionto a three-dimensional grid, where steric,
electrostatic, hydrophobic, and hydrogen-bonding fields are calculated at each grid point. The
resulting spatial maps, when correlatéd,withsbiological activity, offer vivid visualizations that highlight
molecular features driving €nhanced potency or selectivity, making these techniques invaluable for

ligand-based drug design (54455).

Conceptually advanced 3D descriptor families have further enriched the field. Weighted Holistic
Invariant Malecular, (WHIM) descriptors, derived from principal component analysis of atomic
propertiesnlike . mass, electronegativity, and volume, are alignment-independent, making them
particularly “heffective for large datasets with non-standardized conformations. Molecular
Representation of Structures based on Electron diffraction (MoRSE) descriptors simulate electron
diffraction patterns using distance-weighted atomic property functions, demonstrating predictive
power for properties such as lipophilicity, infrared spectra, toxicity, and binding affinity. GETAWAY
descriptors, which integrate geometry, topology, and atomic weighting information, effectively bridge
2D and 3D representations by capturing the combined influence of molecular shape and electronic

distribution on behavior. Additionally, 3D autocorrelation descriptors, derived from atomic
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distributions across molecular surfaces, provide rotational and translational invariance, ensuring

robustness for highly flexible molecules with complex conformational dynamics (56,57).

Despite their higher computational demands than 2D descriptors, 3D descriptors are indispensable
in modern QSAR and QSPR modeling due to their ability to capture nuanced details of molecular
recognition. They are particularly critical in scenarios where biological activity hinges on spatial
complementarity with macromolecular targets, thereby supporting rational drug design strategies
aimed at enhancing selectivity, efficacy, and safety profiles. By linking fine-grained structural details
to functional outcomes, 3D descriptors form a cornerstone of cheminformatics, driving progress in

predictive modeling and drug discovery.

Pharmacophore-Based Descriptors in QSAR/QSPR Modeling

Pharmacophore-based descriptors hold a distinctive role in QSAR and QSPR modeling by focusing on
the structural and physicochemical features essential for molecular recognition by biological targets.
Unlike geometric or quantum-mechanical descriptors ‘thatiheapture broad molecular properties,
pharmacophore descriptors emphasize the spatial arrangement of functional groups critical for
intermolecular interactions, such as hydrogen bonding, electrostatic complementarity, hydrophobic
contacts, and aromatic stacking. This targeted"approach makes them uniquely suited for linking

molecular structure to biological activityi (58).

The concept of a pharmacophore, fifst articulated by Paul Ehrlich, refers to the minimal structural
features required for a moleetle to elicit a biological response. In contemporary cheminformatics,
this idea is translated into quantitative descriptors that encode the three-dimensional distribution of
key molecular features, including hydrogen bond donors and acceptors, charged groups, hydrophobic
regions, aromatic, rings, and steric volumes. These features are represented in formats such as
vectors, grids,;»or distance matrices, which capture both the identity of functional groups and their

spatialsrelationships, providing a robust framework for modeling molecular interactions (59).

A primary advantage of pharmacophore descriptors is their interpretability. Unlike many descriptors
that yield abstract numerical values, pharmacophore features can be directly mapped to specific
molecular structures and correlated with binding sites on biological targets, such as proteins or
nucleic acids. For instance, a pharmacophoric motif defined by two hydrogen bond donors at a specific
distance and orientation relative to an aromatic ring may be critical for enzyme inhibition. This direct

linkage between descriptor and molecular function positions pharmacophore descriptors as a vital
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bridge between ligand-based modeling and structure-based drug design, enabling researchers to

translate computational predictions into actionable chemical insights (60).

Several computational tools have streamlined the application of pharmacophore descriptors.
Platforms like VolSurf+, LigandScout, and MOE generate pharmacophore fingerprints or three-
dimensional pharmacophore models from molecular datasets, which can be correlated with biological
activity or used in virtual screening. Additionally, alignment-free pharmacophore fingerprints have
been developed to efficiently handle large chemical libraries, facilitating rapid similarity searches and

clustering analyses, which are critical for high-throughput drug discovery (61).

Pharmacophore descriptors are particularly valuable for flexible ligands,"ywhere multiple
conformations may fulfill a pharmacophoric hypothesis. When integrated, with¢ conformational
sampling or molecular dynamics simulations, these descriptors evolve.into'dynamic pharmacophores,
or dynophores, which account for the temporal stability and adaptability of pharmacophoric features
in dynamic environments. This approach significantly enhances predictive reliability in systems where
conformational plasticity is a key determinant of activity, stich as in peptide ligands, macrocycles,

and natural products (62,63).

In essence, pharmacophore-based descriptorsfécombine biological relevance, interpretability, and
predictive power. Their ability to pinpoift.the critical interaction motifs driving molecular recognition
makes them indispensable in_modern’ cheminformatics, particularly in drug discovery. They guide
scaffold optimization, lead expansion, and virtual screening of extensive compound libraries, offering

a powerful tool for advancing the design of effective and selective therapeutic agents.

Four-Dimensional (4D) Molecular Descriptors in QSAR/QSPR Modeling

While three-dimensional (3D) descriptors mark a significant improvement over two-dimensional and
topolegical @approaches by incorporating spatial molecular features, they are limited by their reliance
on a single, static conformation, typically optimized in vacuum or with implicit solvation models. In
biological systems, molecules are not rigid but exist as dynamic ensembles of conformers that
fluctuate among various low-energy states. This conformational flexibility means that a single
geometry often fails to capture a compound's full structural and functional behavior, particularly for

molecules with significant flexibility (64).

Four-dimensional (4D) descriptors address this limitation by introducing conformational dynamics as

the fourth dimension, capturing the time-dependent behavior of molecules across their
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conformational landscape. Unlike 3D descriptors, which depend on a single optimized structure, 4D
descriptors incorporate ensembles of conformations generated by computational methods such as
Monte Carlo sampling, molecular dynamics simulations, or docking. These descriptors use averaged
values, weighted factors, or distribution maps to reflect the probabilities and contributions of
individual conformers, thereby enhancing the realism and predictive accuracy of QSAR and QSPR
models. This approach is particularly valuable for flexible molecules, such as peptides, macrocycles,
and compounds with multiple rotatable bonds, where conformational variability significantly

influences biological activity (65).

Several computational frameworks have been developed to leverage 4D descriptorsyThe*™Molecular
Comparative Fields (MCF) approach, for instance, generates statistical “maps| from multiple
conformers to quantify interaction potentials across conformational ensembles. In melecular docking,
tools like AutoDock4, combined with interfaces such as RACCOON, enableiflexible modeling of both
ligands and biomolecular targets, producing 4D docking profiles thatgaccount for binding variability.
Similarly, VolSurf+ employs 4D pharmacophore fields to compute spatiotemporal distributions of
molecular interactions, linking ligand flexibility to pharmacophoric hotspots critical for target

recognition (66).

The strength of 4D descriptors lies ingtheir ability to model the dynamic nature of ligands in
environments where conformational®adaptability governs binding affinity, selectivity, and overall
biological activity. Comparedto traditional 3D QSAR models, 4D ensemble-based approaches deliver
more stable and physiologically relevant predictions, particularly in pharmacodynamic studies where
the interplay between, molecular flexibility and target recognition is paramount (67). As
computational powemand molecular simulation techniques continue to advance, 4D descriptors are
poised to play. an increasingly central role in cheminformatics, bridging the gap between static

structural"models and the dynamic complexity of biological systems.

Empirical and Experimental Descriptors in QSAR/QSPR Modeling

Empirical and experimental descriptors remain a vital component of QSAR and QSPR modeling,
complementing theoretical descriptors derived from quantum-chemical or molecular modeling
approaches. These descriptors, grounded in experimental measurements or established chemical
observations, capture the nuanced effects of substituents, particularly in aromatic systems, by

quantifying electronic, steric, and hydrophobic properties. Their ability to describe molecular
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characteristics that are challenging to model through geometry or electronic structure alone makes

them indispensable for predictive and mechanistic insights in cheminformatics (68).

Prominent among these descriptors are Hammett constants, which measure the electronic effects of
substituents at the meta- and para- positions of aromatic rings, providing insight into how electronic
modifications influence molecular behavior. These are often paired with Swain-Lupton parameters,
which distinguish between inductive and resonance contributions, and Taft parameters, whichgextend
the framework to account for steric effects in aliphatic systems. Another key descriptor, logP,
quantifies hydrophobicity and is critical for evaluating lipophilicity and pharmacokinetic properties,
such as membrane permeability and bioavailability. Verloop parameters further enrich this’category
by describing the steric dimensions of substituents; length, width, thickness, and angular
eccentricity; offering a detailed perspective on spatial effects. Additional descriptors, such as
molecular mass, molar volume, refractivity, and polarizability, provide complementary insights into

molecular size and interaction potential (69).

Rather than being used in isolation, empirical descriptors.are typically integrated with theoretical
ones to build more robust and versatile QSAR/QSPR models. Principal component analysis (PCA)
reveals that these descriptors span multiple dimensions of molecular space; the first dimension is
often dominated by electronic effects, driven,by®"Hammett constants, resonance contributions, and
chemical shifts; the second reflects_steric infldences, captured by Verloop parameters, polarizability,
and volume; and the thirdfencompasses lipophilic and surface-related properties, including logP,
solvent-accessible surface area, and the HOMO-LUMO gap. Notably, descriptors like Taft parameters
and logP often contribute to multiple dimensions, underscoring their complex, multifaceted roles in

molecular characterization (70).

Despite challenges in obtaining consistent, high-quality experimental data, empirical and
experimentaldescriptors remain highly relevant in modern cheminformatics. Their integration with
theoretical descriptors enhances both the predictive accuracy and interpretability of QSAR/QSPR
models, serving as a crucial link between experimental evidence and computational abstraction. By
grounding models in measurable chemical realities and leveraging advanced computational methods,
these descriptors ensure that cheminformatics remains both scientifically robust and practically

applicable (71,72).

SHAP-Based Descriptors in QSAR/QSPR Modeling
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The integration of advanced machine learning into QSAR and QSPR modeling has significantly
enhanced predictive accuracy, but it has also underscored a critical challenge: the lack of
interpretability in high-performing “black-box” models. These models often deliver accurate
predictions without revealing the molecular features driving those outcomes. SHAP (SHapley Additive
exPlanations) values, rooted in cooperative game theory, address this limitation by providing a
rigorous and practical framework for attributing the contribution of each descriptor; whether an
atom-based feature, molecular fragment, topological index, or physicochemical parameter;to a

model’s predictions, offering both local and global interpretability (73).

In QSAR/QSPR studies, SHAP assigns a numerical value to each descriptor, quantifying itsfimpact on
the prediction for a specific molecule. Unlike traditional regression coefficients or static feature
importance rankings, SHAP provides molecule-specific explanations, enabling gsesearchers not only
to predict activity but also to pinpoint which structural elements enhance ondiminish it. Locally, SHAP
highlights how individual molecular features influence a( compound’s outcome, identifying
pharmacophoric or toxicophoric motifs and reactive regions. Glebally, by aggregating contributions
across datasets, SHAP uncovers broader trends, revealing how structural motifs correlate with
biological or physicochemical properties. Visualizations such as heatmaps or feature attribution plots
make these insights intuitive, guiding rational molecular modifications by identifying regions to
optimize or eliminate in drug design (74). SHAP-based descriptors transcend conventional feature
importance metrics by enabling. QSAR/Modelsito serve as both predictive and explanatory tools. This
dual role bridges statistical learning with chemical reasoning, transforming models into tools for
ranking compounds@nd elucidating the chemical logic behind their activity. Such interpretability is
invaluable in personalizedimolecular design, where transparent decision-making supports targeted

exploration of ¢chemical space with mechanistic clarity (75).

By_embedding“interpretability into machine-learning-based QSAR/QSPR frameworks, SHAP-based
descriptorsirepresent a technical and philosophical advancement. They redefine QSAR not only as a
predictive tool but also as an explanatory paradigm, accelerating drug discovery, toxicological
assessment, and rational design across the molecular sciences by providing clarity and actionable
insights into the complex interplay between molecular features and their functional outcomes

(76,77).

Future Directions in Molecular Descriptor Development
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The evolution of molecular descriptors has been instrumental in advancing QSAR and QSPR modeling,
yet significant challenges persist, shaping the path for future innovation. Traditional descriptors
(topological, physicochemical, or quantum-chemical) have proven their predictive strength, but they
often lack generalizability across diverse chemical spaces, suffer from redundancy, and struggle to
adapt to emerging molecular classes. The future of descriptor development lies in addressing these
limitations through innovative, integrative, and dynamic approaches that combine theoretical rigor
with data-driven flexibility, ultimately enhancing both predictive accuracy and mechanistic_insight

(78).

A key direction is the development of hybrid descriptors that seamlessly intégrate “structural,
electronic, dynamic, and experimental information into cohesive representations. By synthesizing
data from multiple molecular domains, these descriptors can capture a more‘camptehensive picture
of molecular behavior while minimizing redundancy through advanceds dimensionality-reduction
techniques, such as principal component analysis or autoencoders. This holistic approach promises
to improve model robustness and applicability, enabling QSAR/QSPR models to tackle complex

chemical systems with greater precision (79).

The rise of data-driven descriptors, derived directly from molecular graphs, SMILES notation, or
three-dimensional conformations, using deep,learning architectures such as graph neural networks
(GNNs), marks another transformativetrend«These representations have demonstrated exceptional
predictive performance, pafticularly(in darge-scale virtual screening. However, their often-opaque
nature poses interpretability’ challenges. A promising avenue is integrating these data-driven
descriptors with classical ones, combining the predictive power of GNN embeddings with the
mechanistic clarity “of, traditional descriptors. By incorporating explainable Al techniques, such as
SHAP or attention,mechanisms, this synergy can preserve the chemical intuition critical for rational

molecularidesign while leveraging the scalability of modern machine learning (80).

Another critical frontier is the development of descriptors that account for the dynamic and context-
dependent nature of molecules in biological systems. Unlike static 3D models, which rely on single,
optimized conformations, real-world molecules exist as dynamic ensembles influenced by solvents,
membranes, and macromolecular interactions. Advancing to four-dimensional (4D) and even five-
dimensional (5D) descriptors; capturing conformational ensembles, temporal evolution, and multi-
scale interactions; offers a path toward more physiologically relevant modeling. Coupling these

descriptors with molecular dynamics simulations, enhanced sampling techniques, or quantum-
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mechanical/molecular-mechanical (QM/MM) hybrid methods will enable a deeper understanding of
how molecular flexibility and environmental factors shape biological activity, paving the way for more

accurate predictions in complex systems (81).

From an application perspective, future descriptors must prioritize transferability and adaptability to
meet the demands of modern drug discovery, materials science, and toxicology. As these fields
increasingly rely on high-throughput screening of diverse chemical libraries, descriptors need to
remain robust across varied molecular classes, including peptides, macrocycles, and nanomaterials.
This requires the development of standardized protocols for descriptor calculationsand the
establishment of interoperable, open-access databases to ensure reproducibility" and cross-study
comparability. Additionally, descriptors tailored to emerging domains, Such as biologics or
nanostructured materials, will be essential to address the unique challenges posed by these systems

(82).

Ultimately, the future of molecular descriptors lies in tgheir transformation from static numerical
encodings to dynamic, context-aware representations that reflect the complexity of molecular
systems. By integrating classical cheminformatics with cutting-edge AI, advancing dynamic and
multi-scale modeling, and prioritizing transferability, the next generation of descriptors will not only
enhance predictive performance but also deepeniotr understanding of the intricate interplay between
molecular structure and function®™Thisp=€volution will empower cheminformatics to drive
breakthroughs in drug discovery, materials design, and toxicological assessment, bridging the gap

between computational prediction and real-world molecular behavior.

Conclusion

Molecular descriptorsiremain the foundation of QSAR and QSPR modeling, uniting a diverse array of
approaches, from zero-dimensional (0D) to four-dimensional (4D), pharmacophore-based, quantum-
chemical, “physicochemical, SMILES/quasi-SMILES, and empirical descriptors. These descriptors
collectively encode molecular composition, connectivity, three-dimensional geometry, conformational
dynamics, electronic properties, and experimental characteristics, enabling robust predictive and
mechanistic modeling across drug discovery, toxicology, materials science, and beyond. Established
methodologies, including topological indices, alignment-independent 3D descriptors, field-based
techniques like CoMFA and CoMSIA, quantum-chemical parameters, and dynamic pharmacophore
models, provide complementary perspectives that facilitate high-throughput virtual screening,

precise molecular optimization, and mechanistic insights into molecular interactions.
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Looking forward, the evolution of QSAR/QSPR hinges on addressing persistent challenges, such as
descriptor redundancy, limited generalizability, and the need for physiological relevance. Hybrid
descriptors that seamlessly integrate structural, electronic, dynamic, and experimental data, refined
using advanced dimensionality-reduction techniques such as principal component analysis or
autoencoders, promise to enhance model robustness and applicability across diverse chemical
spaces. Data-driven descriptors, derived from molecular graphs or SMILES notations via graph neural
networks, offer unparalleled predictive power but require integration with classical descriptors to
ensure chemical interpretability. By leveraging explainable Al techniques, such as SHAP and attention
mechanisms, these hybrid approaches can balance scalability with mechanisticeclarity, /guiding
rational molecular design. Furthermore, the shift toward four-dimensional (4D)zandifive=dimensional
(5D) descriptors; capturing conformational ensembles, temporal dym@amicsp=and multi-scale
interactions via molecular dynamics, enhanced sampling, or quantum-mechanical/molecular-
mechanical methods; will enable more physiologically relevantpredictions, particularly for flexible

molecules like peptides, macrocycles, and biologics in cemplex bielogical environments.

To meet the demands of modern applications, future descriptors must prioritize transferability,
adaptability, and standardization. As drug discoveryp toxicology, and materials science increasingly
rely on screening diverse chemical libraries, descriptors must remain robust across molecular classes,
including nanomaterials and biologics. Standandized protocols for descriptor calculation, coupled with
interoperable, open-access databases, ‘will “ensure reproducibility and cross-study comparability,
fostering collaborative innovation. By harmonizing theoretical rigor with data-driven flexibility, these
advancements will rédefine QSAR/QSPR as a translational framework, bridging predictive accuracy
with chemicallyninformed), mechanistically transparent design. This evolution will accelerate the
development of, novel therapeutics, safer materials, and sustainable chemical solutions, solidifying

molecular descriptors as indispensable tools in the molecular sciences.
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