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Abstract 

Molecular descriptors are a cornerstone of cheminformatics, enabling the transformation of molecular 

structures into quantitative representations used in QSAR and QSPR modeling. This review offers a 

comprehensive and structured overview of descriptor classes, spanning from zero-dimensional (0D) 

constitutional and one-dimensional (1D) fragment-based to two-dimensional (2D) topological, three-

dimensional (3D) geometrical, and four-dimensional (4D) conformational descriptors. The survey 

extends to pharmacophore-based, quantum-chemical, empirical, SMILES-based, and SHAP-based 

descriptors, presenting their theoretical foundations, computational methods, and relevance across 

drug discovery, toxicology, and materials science. Each descriptor type is examined with respect to 

the information it captures—from elemental composition and functional group patterns to spatial 

configurations, electronic properties, conformational ensembles, and symbolic encodings. Emphasis 

is placed on how these descriptors are computed, what structural or dynamic features they represent, 

and how they contribute to predictive modeling. Special categories, such as 4D descriptors that 

incorporate molecular flexibility and SHAP-based descriptors that enable model interpretability, 

illustrate the field's ongoing evolution toward more informative and explainable representations. The 

review also considers hybrid approaches and the incorporation of descriptors into modern machine 

learning frameworks, including Monte Carlo optimization, ensemble modeling, and AI-based 

AMM Pap
er 

Acc
ep

ted



2 

 

prediction systems. Finally, future directions are discussed, including the development of 

transferable, dynamic, and biologically contextual descriptors capable of capturing multi-scale 

chemical behavior. These innovations aim to bridge theoretical precision with data-driven modeling, 

enhancing both predictive performance and mechanistic insight across cheminformatics applications. 

 

Keywords: Molecular descriptors; QSAR/QSPR modeling; Drug discovery; ADMET; Cheminformatics 
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Molekulski deskriptori predstavljaju kamen temeljac hemoinformatike, omogućavajući transformaciju 

molekulskih struktura u kvantitativne reprezentacije koje se koriste u QSAR i QSPR modelovanju. 

Ovaj pregled nudi sveobuhvatan i jasno strukturiran prikaz klasa deskriptora, od nula-dimenzionalnih 

(0D) konstitucionih i jednodimenzionalnih (1D) fragmentnih, preko dvodimenzionalnih (2D) 

topoloških i trodimenzionalnih (3D) geometrijskih, do četvorodimenzionalnih (4D) konformacionih 

deskriptora. Pregled se dalje proteže na farmakoforne, kvantno-hemijske, empirijske, SMILES-

zasnovane i SHAP-zasnovane deskriptore, uz predstavljanje njihovih teorijskih osnova, računarskih 

metoda i relevantnosti u otkrivanju lekova, toksikologiji i nauci o materijalima. Svaka vrsta 

deskriptora razmatra se prema informacijama koje obuhvata — od elementarnog sastava i obrazaca 

funkcionalnih grupa do prostorne organizacije, elektronskih svojstava, konformacionih ansambala i 

simboličkih kodiranja. Poseban akcenat stavljen je na to kako se ovi deskriptori računaju, koje 

strukturne ili dinamičke karakteristike predstavljaju i kako doprinose prediktivnom modelovanju. 

Posebne kategorije, poput 4D deskriptora koji uključuju molekulsku fleksibilnost i SHAP-zasnovanih 

deskriptora koji omogućavaju interpretabilnost modela, ilustruju kontinuiranu evoluciju ka 

informativnijim i objašnjivijim reprezentacijama. U radu se razmatraju i hibridni pristupi, kao i 

uključivanje deskriptora u savremene okvire mašinskog učenja, uključujući Monte Karlo optimizaciju, 

ansambl-modelovanje i sisteme za predikciju zasnovane na veštačkoj inteligenciji. Na kraju se 

diskutuje o budućim pravcima, uključujući razvoj prenosivih, dinamičkih i biološki 
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kontekstualizovanih deskriptora sposobnih da obuhvate višeskalno hemijsko ponašanje. Ove 

inovacije imaju za cilj da premoste teorijsku preciznost i modele vođene podacima, unapređujući i 

prediktivne performanse i mehanistički uvid u primenama hemoinformatike. 

Ključne reči: Molekulski deskriptori, QSAR/QSPR modelovanje, otkrivanje lekova, ADMET, 

hemoinformatika 
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Introduction 

Molecular descriptors are fundamental to building Quantitative Structure–Activity Relationship 

(QSAR) and Quantitative Structure–Property Relationship (QSPR) models, which are critical tools in 

drug discovery, toxicology, and materials science. Originating from the seminal work of Hansch and 

Fujita in the 1960s, these descriptors bridge chemical structures with numerical data, enabling 

statistical and machine learning analyses (1–3). By predicting the properties of novel compounds, 

descriptors streamline experimental research, reducing costs and timelines, which highlights their 

increasing importance in both academic and industrial contexts (4–6). 

Descriptors are numerical values derived from molecular representations, such as Simplified 

Molecular Input Line Entry System (SMILES) notations, graph-based encodings, connectivity 

matrices, or quantum-chemical calculations. They capture diverse molecular characteristics, 

including topological, geometric, electronic, steric, and pharmacophoric properties (7-14). Todeschini 

and Consonni note that descriptors are not arbitrary but result from well-defined mathematical 

transformations that convert chemical information into quantifiable metrics for modeling (12,13). 

The development of thousands of descriptors, documented in detailed monographs and integrated 

into widely used software, has significantly enhanced molecular characterization (12–14). However, 

this expansion introduces challenges, such as descriptor redundancy, interpretability issues, and the 

risk of overfitting in predictive models. As a result, recent studies focus not only on the variety of 

descriptors but also on strategies for their careful selection, validation, and integration into advanced 

machine learning frameworks to ensure robust and reliable predictions (7–14). 

The Role of Molecular Descriptors in QSAR/QSPR Modeling 

Molecular descriptors are essential to QSAR and QSPR modeling, providing a quantitative, objective 

way to represent molecular structures. These descriptors enable researchers to analyze and model 

diverse chemical compounds without relying on specific experimental conditions, serving as the core 

input for a range of modeling techniques—from traditional linear regression and stochastic methods 

to advanced approaches like artificial neural networks, random forests, and XGBoost (15). By 

facilitating predictions of critical properties — such as biological activity, toxicity, ADME/T profiles, 

and physicochemical stability —descriptors not only support predictive modeling but also enhance 

mechanistic insights by identifying structural features, such as toxicophores or pharmacophores, that 
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drive molecular behavior. This dual role aids rational drug design and ecotoxicological risk assessment 

(16). 

The evolution of molecular descriptors has closely paralleled advancements in computational 

chemistry. Early descriptors focused on basic structural counts, such as the numbers of atoms, bonds, 

and rings, followed by topological indices introduced by pioneers such as Wiener, Balaban, and 

Hosoya. Over time, descriptors grew more complex, incorporating two- and three-dimensional 

geometric properties, quantum-chemical metrics like HOMO–LUMO energies and dipole moments, 

and, more recently, four-dimensional descriptors that account for conformational dynamics and 

interactions with biological targets (17,18). This progression reflects a shift from simple structural 

metrics to descriptors capturing intricate aspects of molecular function. 

Today, the field of molecular descriptors is expansive, with over 5,000 distinct descriptors 

documented across various research domains, including constitutional, information-theoretic, 

topological, geometric, electrostatic, quantum-chemical, pharmacophoric, and experimentally 

derived types. Software tools such as Dragon, PaDEL, RDKit, ChemDes, and alvaDesc have become 

indispensable, automating the calculation of thousands of molecular descriptors from molecular 

structures. While this diversity empowers predictive modeling, it also poses challenges related to 

redundancy, high dimensionality, and interpretability (19,20). 

Despite the rise of deep learning and “black-box” modeling approaches, evidence underscores that 

the success of QSAR/QSPR models hinges on the thoughtful selection, engineering, and interpretation 

of descriptors. Well-chosen descriptors improve model robustness and predictive accuracy while 

providing meaningful insights into structure–function relationships. Thus, a deep understanding of 

the theoretical basis, classification, and practical applications of molecular descriptors remains 

fundamental to advancing QSAR and QSPR research (21-23). 

Extended Categories of Molecular Descriptors 

Beyond traditional categories like constitutional, topological, geometrical, and quantum-chemical 

descriptors, several specialized subcategories have enriched the QSAR/QSPR modeling landscape. 

These include descriptors rooted in chemical graph theory, which convert atom and bond connectivity 

into precise mathematical indices; information-theoretic descriptors that quantify structural 

complexity using concepts like entropy; experimentally derived descriptors from physicochemical 

measurements; and pharmacophore-based descriptors that emphasize 3D configurations critical for 
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molecular recognition. Additionally, fragment-based descriptors, which indicate the presence or 

absence of specific functional groups or substructures, provide clear insights into chemical reactivity 

and biological activity, enhancing interpretability (24,25). 

The vast array of descriptors available in modern cheminformatics tools, such as Dragon, PaDEL, 

RDKit, ChemDes, and similar platforms, presents both opportunities and challenges. These tools can 

generate thousands of descriptors from a single molecular structure, enabling robust modeling but 

also introducing issues such as redundancy, collinearity, and overfitting. To address these, feature 

selection and dimensionality reduction techniques, such as Principal Component Analysis (PCA) and 

Recursive Feature Elimination (RFE), have become essential in QSAR/QSPR workflows. These 

methods help identify the most informative descriptors, eliminating noise and redundancy to improve 

model robustness and interpretability (26). 

Another critical aspect is the assessment of chemical similarity in descriptor space. For continuous 

descriptors, similarity is typically measured using distance metrics like Euclidean or Mahalanobis, 

often weighted by feature importance. For binary descriptors, which capture the presence or absence 

of structural fragments, metrics such as the Tanimoto coefficient, Jaccard index, or Manhattan 

distance are commonly used. These similarity measures are foundational to organizing chemical 

libraries, navigating structure–activity relationships, and conducting virtual screening. The choice of 

metric significantly impacts perceived molecular similarity, influencing which compounds are 

prioritized for experimental evaluation (27-29). 

Zero-Dimensional (0D) Descriptors 

Zero-dimensional (0D) descriptors represent the simplest form of molecular characterization, relying 

solely on the molecular formula and counts of constituent atoms, without considering their structural 

connectivity. Examples include molecular weight, counts of specific elements (e.g., carbon, hydrogen, 

nitrogen, oxygen, or halogens), total atom count, elemental mass fractions, empirical formulas, and 

atomic composition indices (30). 

Despite their lack of information on bonding patterns or stereochemistry, 0D descriptors provide a 

basic yet valuable snapshot of molecular size and elemental makeup. In applications such as early-

stage drug discovery or chemical database screening, they serve as efficient filters to eliminate 

molecules outside the desired property ranges. For instance, molecular weight is a key parameter in 

medicinal chemistry, integral to Lipinski’s “rule of five,” and influences pharmacokinetic properties 
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such as absorption, distribution, and metabolic stability. Similarly, atom counts and elemental 

composition can correlate with properties such as polarity or lipophilicity, thereby impacting 

membrane diffusion and overall pharmacokinetic behavior (31). 

Far from being outdated, 0D descriptors remain relevant in modern cheminformatics. They are often 

used as baseline variables in large-scale QSAR/QSPR datasets, complementing more complex 

descriptors. Their straightforward interpretability makes them particularly useful for rapid chemical 

similarity assessments or applying constraints in virtual screening. Thus, 0D descriptors demonstrate 

that even the most fundamental numerical representations of chemical composition can retain 

significant predictive utility when integrated into comprehensive modeling frameworks (32). 

Fragment-Based (1D) Descriptors 

Fragment-based, or one-dimensional (1D) descriptors, are molecular encodings that capture the 

presence or absence of specific functional groups, substructures, or chemical motifs. Often called 

expert-based descriptors, they are grounded in established chemical knowledge, offering a direct, 

interpretable link to molecular functionality. Unlike continuous descriptors focused on size or 

topology, these provide clear insights into the structural components driving molecular behavior. 

Common examples include counts of functional groups (e.g., carbonyls, hydroxyls, amines), aromatic 

or non-aromatic rings, heteroatoms (e.g., N, O, S, P, halogens), and rotatable bonds. The number of 

rotatable bonds is particularly significant as a measure of molecular flexibility. Higher counts often 

correlate with reduced oral bioavailability, lower membrane permeability, and decreased metabolic 

stability, making this descriptor a key component of Lipinski’s “rule of five,” which limits rotatable 

bonds to ten or fewer in drug-like molecules (33). 

Other fragment-based descriptors offer additional insights into molecular complexity. The count of 

rings reflects structural rigidity and planarity, influencing binding affinity and specificity to biological 

targets. Heteroatoms enable directional interactions, such as hydrogen bonding or acid–base 

complementarity, which are critical for defining pharmacophoric patterns and ensuring selective 

molecular recognition. Similarly, the number of heavy atoms (all non-hydrogen atoms) serves as a 

simple yet effective indicator of molecular mass and complexity. Molecules with higher heavy atom 

counts may exhibit greater binding specificity and diverse interactions, but can face challenges like 

reduced permeability or increased toxicity risks due to bioaccumulation (33). 
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Fragment-based descriptors strike a balance between computational simplicity and chemical 

interpretability, making them highly valuable in cheminformatics. Their ease of calculation and ability 

to connect structural motifs to pharmacokinetic and toxicological properties ensure their continued 

relevance in QSAR/QSPR modeling. By linking molecular features to functional outcomes, these 

descriptors bridge numerical modeling with chemically intuitive insights, enhancing both predictive 

accuracy and mechanistic understanding (34). 

Two-Dimensional (2D) Descriptors 

Two-dimensional (2D) molecular descriptors are a cornerstone of QSAR and QSPR modeling, 

capturing the topological structure of molecules based on atom connectivity, independent of their 

three-dimensional conformation (13,14). Rooted in graph theory, these descriptors represent 

molecules as graphs, G=(V,E), where vertices (V) denote atoms and edges (E) represent chemical 

bonds. This abstraction enables quantitative analysis of structural features like chain length, 

branching, cycles, aromatic systems, heteroatom placement, and multiple bond distributions, 

transforming chemical intuition into mathematical indices. A major strength of 2D descriptors is their 

utility when three-dimensional conformations are unavailable, making them ideal for high-throughput 

virtual screening and database mining. Their rapid computation, without the need for geometrical 

optimization, ensures their prominence in cheminformatics workflows (12). 

The development of topological descriptors reflects a progressive formalization of chemical structure. 

The Wiener index (W), one of the earliest measures, calculates the sum of shortest path lengths 

between all atom pairs in a molecular graph. Linear molecules yield higher W values, while branching 

reduces them, making branching effective for predicting properties such as boiling points, melting 

points, lipophilicity (logP), toxicity, and biodistribution. Extensions like the Hyper-Wiener index (WW), 

which incorporates distances and their squares, and the Modified Wiener index (W*), which weights 

central bonds, enhance sensitivity to local structural variations and are particularly useful in 

pharmacophore modeling and reactivity studies (17,35). 

The Randić index (χ), or connectivity index, quantifies branching by using reciprocal values of 

adjacent atom degrees, emphasizing terminal or less-connected atoms. Its extensions, incorporating 

atomic properties such as valence, electronegativity, and polarizability, enable predictions of 

pharmacokinetic and pharmacodynamic properties, including logP, membrane permeability, toxicity, 

and receptor selectivity. The Kier–Hall indices, higher-order extensions of the Randić concept, analyze 
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connectivity patterns across multiple levels, capturing shape, symmetry, and centrality, and are 

effective in distinguishing structural isomers and modeling ligand–receptor interactions (35). 

The Balaban index (J) normalizes average topological distances by the number of bonds and cycles, 

enabling comparisons across molecules of varying sizes. Its robustness makes it valuable for 

predicting ADMET-related properties in diverse chemical datasets, with applications in medicinal 

chemistry and toxicology (36,37). 

Other indices further enrich 2D descriptor applications. The Zagreb indices (M₁ and M₂) use atomic 

degrees to quantify electronic density distribution and molecular flexibility. The Augmented Zagreb 

Index (AZI) accounts for specific bond types and excels at modeling complex, multicentric structures. 

The Hosoya index (Z) counts independent edge pairs, showing sensitivity to cycles and branching, 

while its modified version (Z*) is tailored for carbon-rich frameworks with local symmetries. The 

Szeged index (Sz) refines topological distance by partitioning atoms around each bond, offering 

superior accuracy for systems with local asymmetry or uneven mass distribution compared to the 

Wiener index (38). 

2D topological descriptors demonstrate the power of connectivity-based encodings to capture 

essential molecular architecture. Their computational efficiency, broad applicability, and proven 

predictive accuracy ensure their enduring role in QSAR/QSPR modeling, even as more complex three- 

and four-dimensional descriptors emerge. By providing a balance of simplicity and insight, these 

descriptors remain indispensable for understanding and predicting molecular behavior across diverse 

chemical and biological contexts. 

SMILES-Based Descriptors in QSAR/QSPR Modeling 

SMILES-based descriptors represent a unique and innovative approach in QSAR and QSPR modeling, 

leveraging the SMILES to transform linear string notations into predictive numerical features. Unlike 

traditional descriptors that rely on explicit geometric, topological, or physicochemical 

representations, SMILES-based descriptors directly utilize the text-based molecular graph encoded 

in SMILES, offering a seamless bridge between symbolic chemical representations and quantitative 

modeling (39). 

The core of SMILES-based descriptors lies in decomposing the SMILES string into smaller fragments, 

such as sequences representing specific atoms, bond types, ring closures, or functional groups. Each 

fragment is assigned a numerical weight, which is iteratively optimized using Monte Carlo techniques 
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to maximize correlation with the target endpoint, such as biological activity or physicochemical 

property. The CORAL software has been instrumental in formalizing this methodology, employing 

stochastic optimization to adjust correlation weights and build robust predictive models by balancing 

training and validation datasets. This process ensures that the descriptors are both predictive and 

computationally efficient (40,41). 

A key advantage of SMILES-based descriptors is their versatility and scalability. As SMILES is a 

standardized notation widely adopted in cheminformatics databases, these descriptors can be rapidly 

calculated for large chemical libraries without requiring detailed 2D or 3D structural data. This 

computational simplicity makes them particularly valuable for early-stage virtual screening, where 

speed and scalability are critical. Moreover, their interpretability enhances their utility individual 

SMILES fragments can be directly linked to structural motifs that drive or hinder the modeled 

property, facilitating mechanistic insights into structure–activity or structure–property relationships. 

SMILES-based descriptors are categorized into local and global types. Local descriptors focus on 

specific fragments within the SMILES string, such as “C=O” for carbonyl groups, “–NH–” for amines, 

or “c1ccccc1” for benzene rings, enabling precise identification of substructures that influence the 

target property. This granularity supports the recognition of pharmacophores or toxicophores, 

enhancing the interpretability of QSAR/QSPR models. Global descriptors, in contrast, consider the 

entire SMILES sequence, capturing the cumulative effect of all fragments and their 

interdependencies. This holistic approach contributes to model robustness and stability, particularly 

in Monte Carlo optimization and CORAL-based frameworks, where the combination of local and global 

descriptors balances predictive accuracy with mechanistic clarity (40,41). 

An advanced development in this domain is the introduction of quasi-SMILES descriptors, which 

extend the standard SMILES notation by incorporating non-structural information, such as 

experimental conditions, solvents, or formulation parameters. By embedding contextual metadata, 

quasi-SMILES descriptors enable predictions of not only intrinsic molecular properties but also 

system-level behaviors influenced by environmental factors. This innovation broadens their 

applicability across fields such as medicinal chemistry, ecotoxicology, and nanomaterials research, 

where external conditions significantly influence outcomes (42). 

SMILES-based descriptors have proven robust across diverse endpoints, including physicochemical 

properties like partition coefficients and solubility, toxicological outcomes such as mutagenicity and 

aquatic toxicity, and pharmacological activities. In many instances, models built with SMILES 
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descriptors match or surpass those using traditional 2D or 3D descriptors, particularly when paired 

with Monte Carlo optimization, which systematically explores descriptor space while minimizing 

overfitting. From a broader perspective, SMILES-based descriptors embody a key principle in 

cheminformatics: symbolic representations, when mathematically formalized, can yield powerful 

predictive models without the need for resource-intensive structural calculations. As cheminformatics 

increasingly integrates with big data, text mining, natural language processing, and machine 

learning, the role of SMILES and quasi-SMILES descriptors is poised to grow, offering a 

computationally efficient and interpretable approach to molecular modeling in an era of expanding 

data-driven research (40,41). 

Physicochemical Descriptors in QSAR/QSPR Modeling 

Physicochemical descriptors quantify essential physical and chemical properties of molecules, 

typically derived from two-dimensional (2D) structural data. These descriptors are pivotal in 

evaluating the pharmacokinetic profiles of drug candidates, as they encode attributes that dictate a 

compound’s behavior in biological systems. Key examples include lipophilicity, aqueous solubility, 

permeability, molecular weight, and counts of hydrogen bond donors and acceptors (42). 

Lipophilicity, a critical descriptor, measures a compound’s affinity for lipid environments and 

influences pharmacokinetic processes such as passive membrane transport, intestinal absorption, 

plasma protein binding, tissue distribution, and intracellular bioavailability. Suboptimal lipophilicity 

can lead to poor absorption, reduced oral bioavailability, or limited penetration across barriers like 

the blood–brain barrier. Conversely, excessive lipophilicity may lead to poor aqueous solubility, non-

specific binding, and increased metabolic clearance, posing a key challenge for achieving an optimal 

balance in drug design. 

Studies, both in vitro and in silico, highlight the interplay between lipophilicity and other molecular 

properties, including size, polarity, hydrogen-bonding capacity, and ionization state. For instance, a 

high number of hydrogen bond donors increases polarity, potentially hindering absorption, while 

elevated molecular weight often correlates with reduced membrane permeability and impaired 

transport. Aqueous solubility, another vital descriptor, determines a compound’s availability in free 

form for pharmacological action and elimination. Insufficient solubility can limit efficacy and 

complicate formulation development (43). 
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Physicochemical descriptors offer a dual benefit: they serve as robust predictors of drug efficacy and 

safety, guiding lead optimization toward compounds with favorable ADMET (Absorption, Distribution, 

Metabolism, Excretion, and Toxicity) profiles, and they can be calculated directly from molecular 

structures without experimental data. This computational efficiency makes them invaluable for large-

scale virtual screening and early-stage predictions, enabling rapid evaluation of thousands of 

compounds before resource-intensive experimental testing. 

By bridging fundamental chemical principles with practical drug design, physicochemical descriptors 

combine interpretability with predictive power for ADMET outcomes. Their continued prominence in 

QSAR and QSPR modeling underscores their essential role in modern cheminformatics (44). 

Quantum-Chemical Descriptors in QSAR/QSPR Modeling 

Quantum-chemical descriptors stand at the forefront of modern cheminformatics, offering a 

sophisticated means of capturing the electronic properties of molecules, which significantly enhances 

the interpretability and physiological relevance of QSAR and QSPR models. Unlike traditional two-

dimensional or three-dimensional descriptors that focus on geometry or topology, these descriptors 

provide direct insight into electronic characteristics, enabling predictions of binding affinity, 

selectivity, and reactivity while offering a mechanistic understanding of molecular behavior in 

biological systems (45). 

Historically, the application of quantum-chemical descriptors was constrained by high computational 

costs, limiting early studies to semi-empirical methods like AM1 and PM3. Advances in computational 

power and software have shifted the preference toward density functional theory (DFT), which strikes 

an optimal balance between accuracy and efficiency. Hybrid functionals, such as mPW1PW91 and 

B3LYP, have become particularly effective, delivering reliable estimates of electronic density, charge 

distribution, and total system energy without excessive computational demands (46). 

Among the most significant quantum-chemical descriptors are the energies of frontier molecular 

orbitals, specifically the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular 

orbital (LUMO). Rooted in frontier molecular orbital theory, these descriptors are critical for 

estimating ionization potential, electron affinity, and overall chemical reactivity. The HOMO energy 

indicates a molecule’s tendency to donate electrons, while the LUMO energy reflects its capacity to 

accept them. The HOMO–LUMO gap, the energy difference between these orbitals, serves as a key 

indicator of kinetic stability and reactivity. Derived properties, such as hardness, softness, 
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electronegativity, and electrophilicity, further extend these insights within the Hard and Soft Acids 

and Bases (HSAB) framework, providing a rational basis for predicting molecular selectivity and 

reaction pathways (47). 

Another vital category includes partial atomic charges, calculated using methods such as Mulliken, 

Natural Population Analysis (NPA), or Merz–Kollman. These charges facilitate modeling of 

electrostatic interactions, prediction of hydrogen-bonding patterns, and assessment of electrostatic 

complementarity in protein–ligand interactions. Related properties, such as dipole moment and 

polarizability tensors, describe a molecule’s response to external fields and contribute to 

understanding van der Waals forces, dispersion interactions, and solvation effects (48). 

Quantum-chemical calculations also yield thermodynamic parameters, including enthalpy, free 

energy, and heat capacity, as well as specialized descriptors such as protonation energies and 

quadrupole moments. These parameters not only enhance predictive modeling but also provide 

mechanistic explanations for processes such as proton transfer, tautomerism, and noncovalent 

binding, enriching the understanding of molecular interactions. The true strength of quantum-

chemical descriptors lies in their ability to integrate structural, electronic, and reactivity-related 

information into a unified framework. This dual role, serving as both predictive tools and conceptual 

bridges between molecular structure and mechanism of action, makes them indispensable in drug 

design and molecular modeling. By combining predictive accuracy with explanatory depth, quantum-

chemical descriptors solidify their position as critical tools at the intersection of theoretical chemistry 

and practical applications in cheminformatics (49,50). 

Three-Dimensional (3D) Molecular Descriptors in QSAR/QSPR Modeling 

Three-dimensional (3D) molecular descriptors go beyond the limitations of two-dimensional 

topological descriptors by incorporating the spatial arrangement of atoms within a molecule, offering 

a richer perspective on a molecule's geometric and steric properties. These descriptors provide critical 

insights into biological activity by directly connecting a molecule’s spatial structure to 

pharmacological behaviors such as receptor binding, membrane permeability, and drug–target 

interactions. Unlike their 2D counterparts, which rely solely on atomic connectivity, 3D descriptors 

capture intricate details like molecular volume, surface area, shape, orientation, and spatial 

interactions, making them essential for understanding complex molecular recognition processes that 

underpin biological responses (51). 
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The computation of 3D descriptors begins with geometric optimization of molecular structures, 

typically performed using quantum-chemical methods like PM6 or DFT, or molecular mechanics 

approaches such as MMFF94. These optimized atomic coordinates serve as the foundation for 

calculating a wide array of parameters, including molecular volume, solvent-accessible surface area, 

bond lengths, bond angles, torsional angles, and measures of molecular rigidity or flexibility. This 

ability to account for conformational variability is particularly valuable for molecules that can adopt 

multiple low-energy conformations, as the bioactive conformation often determines the 

pharmacological outcome (52). 

Among the most prominent surface-related descriptors is the polar surface area, defined as the 

cumulative surface contributions of polar atoms, such as oxygen and nitrogen, along with their 

attached hydrogens. This descriptor is a powerful predictor of oral bioavailability and blood–brain 

barrier penetration, with well-established empirical thresholds that guide medicinal chemists in 

refining molecular scaffolds to optimize absorption and distribution properties (53). 

Significant advancements in 3D descriptor methodologies have come through grid-based approaches, 

notably Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices 

Analysis (CoMSIA). These methods project molecules onto a three-dimensional grid, where steric, 

electrostatic, hydrophobic, and hydrogen-bonding fields are calculated at each grid point. The 

resulting spatial maps, when correlated with biological activity, offer vivid visualizations that highlight 

molecular features driving enhanced potency or selectivity, making these techniques invaluable for 

ligand-based drug design (54,55). 

Conceptually advanced 3D descriptor families have further enriched the field. Weighted Holistic 

Invariant Molecular (WHIM) descriptors, derived from principal component analysis of atomic 

properties like mass, electronegativity, and volume, are alignment-independent, making them 

particularly effective for large datasets with non-standardized conformations. Molecular 

Representation of Structures based on Electron diffraction (MoRSE) descriptors simulate electron 

diffraction patterns using distance-weighted atomic property functions, demonstrating predictive 

power for properties such as lipophilicity, infrared spectra, toxicity, and binding affinity. GETAWAY 

descriptors, which integrate geometry, topology, and atomic weighting information, effectively bridge 

2D and 3D representations by capturing the combined influence of molecular shape and electronic 

distribution on behavior. Additionally, 3D autocorrelation descriptors, derived from atomic 
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distributions across molecular surfaces, provide rotational and translational invariance, ensuring 

robustness for highly flexible molecules with complex conformational dynamics (56,57). 

Despite their higher computational demands than 2D descriptors, 3D descriptors are indispensable 

in modern QSAR and QSPR modeling due to their ability to capture nuanced details of molecular 

recognition. They are particularly critical in scenarios where biological activity hinges on spatial 

complementarity with macromolecular targets, thereby supporting rational drug design strategies 

aimed at enhancing selectivity, efficacy, and safety profiles. By linking fine-grained structural details 

to functional outcomes, 3D descriptors form a cornerstone of cheminformatics, driving progress in 

predictive modeling and drug discovery. 

Pharmacophore-Based Descriptors in QSAR/QSPR Modeling 

Pharmacophore-based descriptors hold a distinctive role in QSAR and QSPR modeling by focusing on 

the structural and physicochemical features essential for molecular recognition by biological targets. 

Unlike geometric or quantum-mechanical descriptors that capture broad molecular properties, 

pharmacophore descriptors emphasize the spatial arrangement of functional groups critical for 

intermolecular interactions, such as hydrogen bonding, electrostatic complementarity, hydrophobic 

contacts, and aromatic stacking. This targeted approach makes them uniquely suited for linking 

molecular structure to biological activity (58). 

The concept of a pharmacophore, first articulated by Paul Ehrlich, refers to the minimal structural 

features required for a molecule to elicit a biological response. In contemporary cheminformatics, 

this idea is translated into quantitative descriptors that encode the three-dimensional distribution of 

key molecular features, including hydrogen bond donors and acceptors, charged groups, hydrophobic 

regions, aromatic rings, and steric volumes. These features are represented in formats such as 

vectors, grids, or distance matrices, which capture both the identity of functional groups and their 

spatial relationships, providing a robust framework for modeling molecular interactions (59). 

A primary advantage of pharmacophore descriptors is their interpretability. Unlike many descriptors 

that yield abstract numerical values, pharmacophore features can be directly mapped to specific 

molecular structures and correlated with binding sites on biological targets, such as proteins or 

nucleic acids. For instance, a pharmacophoric motif defined by two hydrogen bond donors at a specific 

distance and orientation relative to an aromatic ring may be critical for enzyme inhibition. This direct 

linkage between descriptor and molecular function positions pharmacophore descriptors as a vital 
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bridge between ligand-based modeling and structure-based drug design, enabling researchers to 

translate computational predictions into actionable chemical insights (60). 

Several computational tools have streamlined the application of pharmacophore descriptors. 

Platforms like VolSurf+, LigandScout, and MOE generate pharmacophore fingerprints or three-

dimensional pharmacophore models from molecular datasets, which can be correlated with biological 

activity or used in virtual screening. Additionally, alignment-free pharmacophore fingerprints have 

been developed to efficiently handle large chemical libraries, facilitating rapid similarity searches and 

clustering analyses, which are critical for high-throughput drug discovery (61). 

Pharmacophore descriptors are particularly valuable for flexible ligands, where multiple 

conformations may fulfill a pharmacophoric hypothesis. When integrated with conformational 

sampling or molecular dynamics simulations, these descriptors evolve into dynamic pharmacophores, 

or dynophores, which account for the temporal stability and adaptability of pharmacophoric features 

in dynamic environments. This approach significantly enhances predictive reliability in systems where 

conformational plasticity is a key determinant of activity, such as in peptide ligands, macrocycles, 

and natural products (62,63). 

In essence, pharmacophore-based descriptors combine biological relevance, interpretability, and 

predictive power. Their ability to pinpoint the critical interaction motifs driving molecular recognition 

makes them indispensable in modern cheminformatics, particularly in drug discovery. They guide 

scaffold optimization, lead expansion, and virtual screening of extensive compound libraries, offering 

a powerful tool for advancing the design of effective and selective therapeutic agents. 

Four-Dimensional (4D) Molecular Descriptors in QSAR/QSPR Modeling 

While three-dimensional (3D) descriptors mark a significant improvement over two-dimensional and 

topological approaches by incorporating spatial molecular features, they are limited by their reliance 

on a single, static conformation, typically optimized in vacuum or with implicit solvation models. In 

biological systems, molecules are not rigid but exist as dynamic ensembles of conformers that 

fluctuate among various low-energy states. This conformational flexibility means that a single 

geometry often fails to capture a compound's full structural and functional behavior, particularly for 

molecules with significant flexibility (64). 

Four-dimensional (4D) descriptors address this limitation by introducing conformational dynamics as 

the fourth dimension, capturing the time-dependent behavior of molecules across their 
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conformational landscape. Unlike 3D descriptors, which depend on a single optimized structure, 4D 

descriptors incorporate ensembles of conformations generated by computational methods such as 

Monte Carlo sampling, molecular dynamics simulations, or docking. These descriptors use averaged 

values, weighted factors, or distribution maps to reflect the probabilities and contributions of 

individual conformers, thereby enhancing the realism and predictive accuracy of QSAR and QSPR 

models. This approach is particularly valuable for flexible molecules, such as peptides, macrocycles, 

and compounds with multiple rotatable bonds, where conformational variability significantly 

influences biological activity (65). 

Several computational frameworks have been developed to leverage 4D descriptors. The Molecular 

Comparative Fields (MCF) approach, for instance, generates statistical maps from multiple 

conformers to quantify interaction potentials across conformational ensembles. In molecular docking, 

tools like AutoDock4, combined with interfaces such as RACCOON, enable flexible modeling of both 

ligands and biomolecular targets, producing 4D docking profiles that account for binding variability. 

Similarly, VolSurf+ employs 4D pharmacophore fields to compute spatiotemporal distributions of 

molecular interactions, linking ligand flexibility to pharmacophoric hotspots critical for target 

recognition (66). 

The strength of 4D descriptors lies in their ability to model the dynamic nature of ligands in 

environments where conformational adaptability governs binding affinity, selectivity, and overall 

biological activity. Compared to traditional 3D QSAR models, 4D ensemble-based approaches deliver 

more stable and physiologically relevant predictions, particularly in pharmacodynamic studies where 

the interplay between molecular flexibility and target recognition is paramount (67). As 

computational power and molecular simulation techniques continue to advance, 4D descriptors are 

poised to play an increasingly central role in cheminformatics, bridging the gap between static 

structural models and the dynamic complexity of biological systems. 

Empirical and Experimental Descriptors in QSAR/QSPR Modeling 

Empirical and experimental descriptors remain a vital component of QSAR and QSPR modeling, 

complementing theoretical descriptors derived from quantum-chemical or molecular modeling 

approaches. These descriptors, grounded in experimental measurements or established chemical 

observations, capture the nuanced effects of substituents, particularly in aromatic systems, by 

quantifying electronic, steric, and hydrophobic properties. Their ability to describe molecular 
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characteristics that are challenging to model through geometry or electronic structure alone makes 

them indispensable for predictive and mechanistic insights in cheminformatics (68). 

Prominent among these descriptors are Hammett constants, which measure the electronic effects of 

substituents at the meta- and para- positions of aromatic rings, providing insight into how electronic 

modifications influence molecular behavior. These are often paired with Swain–Lupton parameters, 

which distinguish between inductive and resonance contributions, and Taft parameters, which extend 

the framework to account for steric effects in aliphatic systems. Another key descriptor, logP, 

quantifies hydrophobicity and is critical for evaluating lipophilicity and pharmacokinetic properties, 

such as membrane permeability and bioavailability. Verloop parameters further enrich this category 

by describing the steric dimensions of substituents; length, width, thickness, and angular 

eccentricity; offering a detailed perspective on spatial effects. Additional descriptors, such as 

molecular mass, molar volume, refractivity, and polarizability, provide complementary insights into 

molecular size and interaction potential (69). 

Rather than being used in isolation, empirical descriptors are typically integrated with theoretical 

ones to build more robust and versatile QSAR/QSPR models. Principal component analysis (PCA) 

reveals that these descriptors span multiple dimensions of molecular space; the first dimension is 

often dominated by electronic effects, driven by Hammett constants, resonance contributions, and 

chemical shifts; the second reflects steric influences, captured by Verloop parameters, polarizability, 

and volume; and the third encompasses lipophilic and surface-related properties, including logP, 

solvent-accessible surface area, and the HOMO–LUMO gap. Notably, descriptors like Taft parameters 

and logP often contribute to multiple dimensions, underscoring their complex, multifaceted roles in 

molecular characterization (70). 

Despite challenges in obtaining consistent, high-quality experimental data, empirical and 

experimental descriptors remain highly relevant in modern cheminformatics. Their integration with 

theoretical descriptors enhances both the predictive accuracy and interpretability of QSAR/QSPR 

models, serving as a crucial link between experimental evidence and computational abstraction. By 

grounding models in measurable chemical realities and leveraging advanced computational methods, 

these descriptors ensure that cheminformatics remains both scientifically robust and practically 

applicable (71,72). 

SHAP-Based Descriptors in QSAR/QSPR Modeling 
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The integration of advanced machine learning into QSAR and QSPR modeling has significantly 

enhanced predictive accuracy, but it has also underscored a critical challenge: the lack of 

interpretability in high-performing “black-box” models. These models often deliver accurate 

predictions without revealing the molecular features driving those outcomes. SHAP (SHapley Additive 

exPlanations) values, rooted in cooperative game theory, address this limitation by providing a 

rigorous and practical framework for attributing the contribution of each descriptor; whether an 

atom-based feature, molecular fragment, topological index, or physicochemical parameter; to a 

model’s predictions, offering both local and global interpretability (73). 

In QSAR/QSPR studies, SHAP assigns a numerical value to each descriptor, quantifying its impact on 

the prediction for a specific molecule. Unlike traditional regression coefficients or static feature 

importance rankings, SHAP provides molecule-specific explanations, enabling researchers not only 

to predict activity but also to pinpoint which structural elements enhance or diminish it. Locally, SHAP 

highlights how individual molecular features influence a compound’s outcome, identifying 

pharmacophoric or toxicophoric motifs and reactive regions. Globally, by aggregating contributions 

across datasets, SHAP uncovers broader trends, revealing how structural motifs correlate with 

biological or physicochemical properties. Visualizations such as heatmaps or feature attribution plots 

make these insights intuitive, guiding rational molecular modifications by identifying regions to 

optimize or eliminate in drug design (74). SHAP-based descriptors transcend conventional feature 

importance metrics by enabling QSAR models to serve as both predictive and explanatory tools. This 

dual role bridges statistical learning with chemical reasoning, transforming models into tools for 

ranking compounds and elucidating the chemical logic behind their activity. Such interpretability is 

invaluable in personalized molecular design, where transparent decision-making supports targeted 

exploration of chemical space with mechanistic clarity (75). 

By embedding interpretability into machine-learning–based QSAR/QSPR frameworks, SHAP-based 

descriptors represent a technical and philosophical advancement. They redefine QSAR not only as a 

predictive tool but also as an explanatory paradigm, accelerating drug discovery, toxicological 

assessment, and rational design across the molecular sciences by providing clarity and actionable 

insights into the complex interplay between molecular features and their functional outcomes 

(76,77). 

Future Directions in Molecular Descriptor Development 
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The evolution of molecular descriptors has been instrumental in advancing QSAR and QSPR modeling, 

yet significant challenges persist, shaping the path for future innovation. Traditional descriptors 

(topological, physicochemical, or quantum-chemical) have proven their predictive strength, but they 

often lack generalizability across diverse chemical spaces, suffer from redundancy, and struggle to 

adapt to emerging molecular classes. The future of descriptor development lies in addressing these 

limitations through innovative, integrative, and dynamic approaches that combine theoretical rigor 

with data-driven flexibility, ultimately enhancing both predictive accuracy and mechanistic insight 

(78). 

A key direction is the development of hybrid descriptors that seamlessly integrate structural, 

electronic, dynamic, and experimental information into cohesive representations. By synthesizing 

data from multiple molecular domains, these descriptors can capture a more comprehensive picture 

of molecular behavior while minimizing redundancy through advanced dimensionality-reduction 

techniques, such as principal component analysis or autoencoders. This holistic approach promises 

to improve model robustness and applicability, enabling QSAR/QSPR models to tackle complex 

chemical systems with greater precision (79). 

The rise of data-driven descriptors, derived directly from molecular graphs, SMILES notation, or 

three-dimensional conformations, using deep learning architectures such as graph neural networks 

(GNNs), marks another transformative trend. These representations have demonstrated exceptional 

predictive performance, particularly in large-scale virtual screening. However, their often-opaque 

nature poses interpretability challenges. A promising avenue is integrating these data-driven 

descriptors with classical ones, combining the predictive power of GNN embeddings with the 

mechanistic clarity of traditional descriptors. By incorporating explainable AI techniques, such as 

SHAP or attention mechanisms, this synergy can preserve the chemical intuition critical for rational 

molecular design while leveraging the scalability of modern machine learning (80). 

Another critical frontier is the development of descriptors that account for the dynamic and context-

dependent nature of molecules in biological systems. Unlike static 3D models, which rely on single, 

optimized conformations, real-world molecules exist as dynamic ensembles influenced by solvents, 

membranes, and macromolecular interactions. Advancing to four-dimensional (4D) and even five-

dimensional (5D) descriptors; capturing conformational ensembles, temporal evolution, and multi-

scale interactions; offers a path toward more physiologically relevant modeling. Coupling these 

descriptors with molecular dynamics simulations, enhanced sampling techniques, or quantum-
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mechanical/molecular-mechanical (QM/MM) hybrid methods will enable a deeper understanding of 

how molecular flexibility and environmental factors shape biological activity, paving the way for more 

accurate predictions in complex systems (81). 

From an application perspective, future descriptors must prioritize transferability and adaptability to 

meet the demands of modern drug discovery, materials science, and toxicology. As these fields 

increasingly rely on high-throughput screening of diverse chemical libraries, descriptors need to 

remain robust across varied molecular classes, including peptides, macrocycles, and nanomaterials. 

This requires the development of standardized protocols for descriptor calculation and the 

establishment of interoperable, open-access databases to ensure reproducibility and cross-study 

comparability. Additionally, descriptors tailored to emerging domains, such as biologics or 

nanostructured materials, will be essential to address the unique challenges posed by these systems 

(82). 

Ultimately, the future of molecular descriptors lies in their transformation from static numerical 

encodings to dynamic, context-aware representations that reflect the complexity of molecular 

systems. By integrating classical cheminformatics with cutting-edge AI, advancing dynamic and 

multi-scale modeling, and prioritizing transferability, the next generation of descriptors will not only 

enhance predictive performance but also deepen our understanding of the intricate interplay between 

molecular structure and function. This evolution will empower cheminformatics to drive 

breakthroughs in drug discovery, materials design, and toxicological assessment, bridging the gap 

between computational prediction and real-world molecular behavior. 

Conclusion 

Molecular descriptors remain the foundation of QSAR and QSPR modeling, uniting a diverse array of 

approaches, from zero-dimensional (0D) to four-dimensional (4D), pharmacophore-based, quantum-

chemical, physicochemical, SMILES/quasi-SMILES, and empirical descriptors. These descriptors 

collectively encode molecular composition, connectivity, three-dimensional geometry, conformational 

dynamics, electronic properties, and experimental characteristics, enabling robust predictive and 

mechanistic modeling across drug discovery, toxicology, materials science, and beyond. Established 

methodologies, including topological indices, alignment-independent 3D descriptors, field-based 

techniques like CoMFA and CoMSIA, quantum-chemical parameters, and dynamic pharmacophore 

models, provide complementary perspectives that facilitate high-throughput virtual screening, 

precise molecular optimization, and mechanistic insights into molecular interactions. 
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Looking forward, the evolution of QSAR/QSPR hinges on addressing persistent challenges, such as 

descriptor redundancy, limited generalizability, and the need for physiological relevance. Hybrid 

descriptors that seamlessly integrate structural, electronic, dynamic, and experimental data, refined 

using advanced dimensionality-reduction techniques such as principal component analysis or 

autoencoders, promise to enhance model robustness and applicability across diverse chemical 

spaces. Data-driven descriptors, derived from molecular graphs or SMILES notations via graph neural 

networks, offer unparalleled predictive power but require integration with classical descriptors to 

ensure chemical interpretability. By leveraging explainable AI techniques, such as SHAP and attention 

mechanisms, these hybrid approaches can balance scalability with mechanistic clarity, guiding 

rational molecular design. Furthermore, the shift toward four-dimensional (4D) and five-dimensional 

(5D) descriptors; capturing conformational ensembles, temporal dynamics, and multi-scale 

interactions via molecular dynamics, enhanced sampling, or quantum-mechanical/molecular-

mechanical methods; will enable more physiologically relevant predictions, particularly for flexible 

molecules like peptides, macrocycles, and biologics in complex biological environments. 

To meet the demands of modern applications, future descriptors must prioritize transferability, 

adaptability, and standardization. As drug discovery, toxicology, and materials science increasingly 

rely on screening diverse chemical libraries, descriptors must remain robust across molecular classes, 

including nanomaterials and biologics. Standardized protocols for descriptor calculation, coupled with 

interoperable, open-access databases, will ensure reproducibility and cross-study comparability, 

fostering collaborative innovation. By harmonizing theoretical rigor with data-driven flexibility, these 

advancements will redefine QSAR/QSPR as a translational framework, bridging predictive accuracy 

with chemically informed, mechanistically transparent design. This evolution will accelerate the 

development of novel therapeutics, safer materials, and sustainable chemical solutions, solidifying 

molecular descriptors as indispensable tools in the molecular sciences. 
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