

Review article

doi:10.5633/amm.2026.0218

**FROM ORIGIN TO THERAPEUTIC POTENTIAL OF EXOSOMES IN WOUND HEALING: A
MINI-REVIEW**

Mišel Mutlag¹, Ivana Damnjanović², Sanja Stojanović^{3,4}, Zoran Damnjanović^{5,6}

¹University of Niš, Faculty of Medicine, doctoral studies, Niš, Serbia

²University of Niš, Faculty of Medicine, Department of Pharmacy, Niš, Serbia

³University of Niš, Faculty of Medicine, Department of Biology with Human Genetics, Niš, Serbia

⁴University of Niš, Faculty of Medicine, Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Niš, Serbia

⁵University of Niš, Faculty of Medicine, Department of Surgery and Anesthesiology and Reanimatology, Niš, Serbia

⁶University Clinical Center Niš, Clinic for Vascular Surgery, Niš, Serbia

Contact: Zoran Damnjanović

81 dr Zorana Djindjića Blvd., 18000 Niš, Serbia

E-mail: zoran.damjanovic@medfak.ni.ac.rs

Wound healing, particularly the management of chronic wounds, remains a major global health challenge due to its complexity and the limitations of current treatments. Exosomes, lipid-bound vesicles and the smallest subpopulation of extracellular vesicles (EVs), have emerged as highly promising therapeutic tools. These vesicles can be classified by their origin as natural-derived (animal or plant-derived), modified, or artificial. They exert a wide range of biological effects

essential for tissue regeneration, including anti-inflammatory, immunomodulatory, and antioxidant properties, as well as promoting angiogenesis, intercellular communication, and extracellular matrix remodeling. Furthermore, the capacity of exosomes for targeted drug delivery and epigenetic regulation positions them as versatile candidates for treating various disorders. This review discusses and summarizes the characteristics of exosomes from diverse origins, providing an overview of their primary roles in wound healing and tissue regeneration.

Keywords: exosomes, wound healing, regenerative medicine

OD POREKLA DO TERAPIJSKOG POTENCIJALA EGZOZOMA U ZARASTANJU RANA: MINI-PREGLED

Mišel Mutlag¹, Ivana Damnjanović², Sanja Stojanović^{3,4}, Zoran Damnjanović^{5,6}

¹Univerzitet u Nišu, Medicinski fakultet, student doktorskih studija, Niš, Srbija

²Univerzitet u Nišu, Medicinski fakultet, Katedra Farmacije, Niš, Srbija

³Univerzitet u Nišu, Medicinski fakultet, UNO Biologija sa humanom genetikom, Niš, Srbija

⁴Univerzitet u Nišu, Medicinski fakultet, Odeljenje za ćelijsko i tkivno inžinjerstvo,

Naučnoistraživački centar za biomedicinu, Niš, Srbija

⁵Univerzitet u Nišu, Medicinski fakultet, Katedra Hirurgija i Anesteziologija sa reanimatologijom, Niš, Srbija

⁶Univerzitetski klinički centar Niš, Klinika za vaskularnu hirurgiju, Niš, Srbija

Zarastanje rana, a naročito lečenje hroničnih rana, predstavlja značajan globalni zdravstveni izazov zbog svoje kompleksnosti i ograničenja postojećih terapijskih opcija. Egzozomi, lipidne vezikule i najmanja subpopulacija ekstracelularnih vezikula (EV), postali su veoma perspektivno terapijsko sredstvo. Prema poreklu, ove vezikule se klasifikuju na prirodne (životinjskog ili biljnog porekla), modifikovane i sintetičke (veštačke). One ispoljavaju širok spektar bioloških efekata neophodnih za regeneraciju tkiva, kao što su anti-inflamatorna, imunomodulatorna i antioksidativna svojstva, uz stimulaciju angiogeneze, međućelijske komunikacije i remodeliranja ekstracelularnog matriksa. Pored toga, sposobnost egzozoma za ciljanu isporuku lekova i epigenetsku regulaciju čini ih svestranim kandidatima za lečenje brojnih poremećaja. Ovaj rad analizira i sumira karakteristike

egzozoma različitog porekla, uz poseban osvrт na njihovu ulogu u procesima zarastanja rana i regeneracije tkiva.

Ključne reči: egzozomi, zarastanje rana, regenerativna medicina

AMM Paper Accepted

INTRODUCTION

The skin is the largest organ of the human body, accounting for approximately 16% of total body mass, and serves as a key barrier between internal tissues and the external environment. Therefore, preserving skin integrity is essential for maintaining health, as skin plays a vital role in homeostasis, protection against infections, and the prevention of fluid loss (1). Skin injuries or wounds can seriously threaten the body's functionality, cause disability and psychological distress, and pose a significant challenge to healthcare systems worldwide (2).

The skin healing process is mediated by coordinated cellular responses, extracellular matrix remodeling, and the action of various growth factors, which restore the functional and anatomical integrity of the skin (3). However, numerous factors can disrupt this process, leading to significant delays; consequently, wounds often become resistant to standard therapeutic approaches (2). The prevalence of acute and chronic wounds, often described as a "silent epidemic", is a major global health challenge, as it impairs the functional and structural integrity of the skin, affecting more than 4% of the world's population due to various pathologies. In Europe, more than 10 million patients are affected, and the annual economic burden on healthcare systems for their treatment exceeds 4 billion euros (4).

Despite intensive research and efforts to enhance wound treatment methods, therapy remains a significant clinical challenge, due in part to the complexity of assessing wound status and managing the healing process. Consequently, developing innovative strategies to accelerate and improve wound healing is crucial for further advances in medical practice and global health (5). In this context, exosomes, as extracellular lipid-bound vesicles generated by eukaryotic cells or engineered, carrying nucleic acids, proteins, lipids, and metabolites, have emerged in recent years as a promising therapeutic option, attracting considerable attention from researchers and clinicians due to their regenerative properties (6).

This review analyzes the therapeutic potential of exosomes from various sources in the wound healing process, with a specific focus on the mechanisms by which these vesicles contribute to tissue regeneration. Furthermore, in this review the characteristics of exosomes of different origin are summarized and discussed.

THE DISCOVERY OF EXOSOMES

Initially, intercellular communication was described solely as resulting from direct cell-to-cell contact or the release of soluble molecules, such as cytokines and hormones. However, the discovery of extracellular vesicles (EVs) revealed an additional mechanism of cellular communication (7). "Extracellular vesicles" is an umbrella term encompassing various subtypes. EVs are a family of nanoparticles that includes exosomes, microvesicles, and apoptotic bodies, the latter being released during the cell death process. Secreted by nearly all cell types, EVs are present in various body fluids, making them highly promising candidates for biomarker detection (8).

Although EVs research has expanded rapidly over the last decade, EVs were not immediately embraced by the cell biology community upon their discovery in the 1980s. Early studies suggesting that cells release EVs as a mechanism for debris removal were met with skepticism (9,10), and these vesicles were often dismissed as experimental artifacts (11). EVs possess a lipid bilayer that encapsulates cellular cargo, including proteins, DNA, and various RNA molecules. This lipid membrane protects these molecules from degradation, facilitating their functional transfer between cells. Notably, while it has been demonstrated that EVs-shuttled miRNAs can be functional in recipient cells, their endogenous concentration remains remarkably low - approximately one miRNA molecule per 100 vesicles (12-14). Nevertheless, the vast diversity of biomolecules within EVs suggests a broad functional spectrum, and it is now established that EVs participate in numerous physiological and pathological processes (15).

Three main groups of EVs are currently recognized: exosomes, microvesicles, and apoptotic bodies. While microvesicles and apoptotic bodies form through direct budding from the cell membrane, exosomes originate within multivesicular bodies (MVBs) and are released when MVBs fuse with the cell membrane (16). Exosomes represent the smallest vesicle population (15,16). As a subset of extracellular vesicles, they are endosomal in origin and range in size from 30 to several hundred nanometers, depending on the cell source and the isolation methods employed (17). Due to their unique biogenesis, molecular complexity, and functional versatility, they play a crucial role in various cellular processes. Although the term "exosome" was first used in 1981 to describe vesicles secreted from the cell surface, it was not until 1983 that they were formally discovered (18). A pivotal moment for the field was the 2013 Nobel Prize in Physiology or Medicine, awarded

for the discovery of vesicle transport mechanisms (19). This early potential has been realized over the past three decades through the explosive growth of exosome biology, leading to the formation of various specialized societies (such as the International Society for Extracellular Vesicles and the American Society for Exosomes and Microvesicles), a dedicated journal (Journal of Extracellular Vesicles), as well as various international symposia and congresses, and thousands of publications. Today, exosomes are recognized not only as biomarkers but as active participants in disease pathogenesis, diagnosis, and therapy. Their transition from basic science to clinical application is the result of significant advancements in understanding exosome biology and the development of modern analytical technologies (9).

EXOSOME ISOLATION TECHNIQUES

Various methods have been developed to isolate exosomes from diverse sources. The most widely utilized technique is ultracentrifugation, which enables the recovery of high yields of isolated exosomes (20,21). This method is based on differences in particle density and size, offering a relatively simple and cost-effective approach (22). Ultrafiltration is a rapid and convenient method for separating exosomes by size, using membranes with specific pore sizes. However, the primary limitations of this technique include membrane pore clogging and potential vesicle damage (23). Additionally, chromatographic methods and polymer-induced precipitation are frequently employed (23,24). Furthermore, innovative strategies based on the physicochemical properties of exosomes have emerged, including selective capture using biopolymers, microfluidic techniques, and size-based and hydrodynamic separation. Other advanced approaches involve hybridizing exosomes with liposomes to enhance capture efficiency or delivery (24).

ORIGIN OF EXOSOMES

Exosomes exhibit considerable heterogeneity, stemming from differences in their cellular origin and source. Although a single standardized classification is lacking, most studies categorize exosomes into natural, modified, and artificial types (20). Natural exosomes are endogenous nanomaterials secreted via exocytosis from a wide array of cells, including epithelial and endothelial cells, mesenchymal stem cells, macrophages, dendritic cells, tumor cells, neurons, oligodendrocytes, reticulocytes, mast cells, platelets, B and T lymphocytes, and astrocytes. Furthermore, they can be isolated from plant cells and tissues and that is why natural exosomes are usually divided into animal-derived exosomes and plant-derived exosomes (25). They are

present in most body fluids, such as plasma, serum, urine, breast milk, seminal fluid, saliva, nasal secretions, lymph, amniotic fluid, ascites, and cerebrospinal fluid (26). Due to their superior biocompatibility and relatively straightforward, cost-effective isolation processes compared with other sources, plant- and animal-derived exosomes are increasingly being considered as potential natural therapeutic agents (27).

Animal-derived exosomes

Exosomes are generated through the endosomal pathway. They are formed with the invagination of the plasma membrane and may subsequently fuse with vesicles originating from the Golgi apparatus and the endoplasmic reticulum (ER). Precursors to exosomes, known as intraluminal vesicles (ILVs), are formed by the inward budding of the endosomal membrane, resulting in the formation of multivesicular bodies (MVBs) (28,29). The Endosomal Sorting Complex Required for Transport (ESCRT) comprises approximately 30 proteins organized into four major subcomplexes: ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III. These subcomplexes play a pivotal role in sorting proteins into ILVs inside the MVBs, thereby facilitating exosome formation (8). Following their formation, MVBs follow one of two fates: they either fuse with lysosomes for cargo degradation or fuse with the plasma membrane. Upon fusion with the plasma membrane, ILVs are released into the extracellular space and are formally termed "exosomes" (30). Exosomes are derived from a vast array of cellular sources (31). Animal-derived exosomes are primarily secreted by immune cells (such as lymphocytes, erythrocytes, platelets, dendritic cells, and tumor cells), and are present in various biological fluids (including urine, milk, and plasma) (32).

Plant-derived exosomes

The endocytic pathway in plant cells is not as clearly characterized as its animal counterpart. Proteins are internalized through the invagination, budding, and formation of transport vesicles on the plasma membrane, which are directed as early endosomes toward the trans-Golgi Network (TGN). A subunit of the TGN subsequently matures into MVBs (33). Most of the ESCRT complexes responsible for the formation and release of intraluminal structures within MVBs are highly conserved in plants and perform analogous functions. Despite a few distinctions, such as the absence of ESCRT-0 and the presence of TOL proteins along with the unique FREE1 protein, the mechanism of exosome formation in plants primarily occurs through the activity of ESCRT protein complexes involved in the sorting and maturation of MVBs (16,34). Plants, however, also employ a

distinct pathway for exosome production that involves double-membrane autophagosome-like structures termed EXPOs (EXocyst-positive organelles). Although EXPOs share certain similarities with autophagosomes, they do not follow the typical endocytic pathway, nor do they fuse with lytic compartments. Instead, they fuse directly with the plasma membrane, releasing single-membrane vesicles into the cell wall. These vesicles are considered exosomes generated via the EXPO pathway, distinguishing them from animal exosomes, which are derived exclusively from MVBs (35). Plant exosomes can be isolated from a diverse range of sources, including roots, leaves, fruits, and seeds.

Modified exosomes

Researchers have made significant efforts to integrate exosomes into clinical practice. Concurrently, the engineering of artificial exosomes is advancing rapidly, effectively replicating the functional properties of natural exosomes (36). Various strategies are employed to create modified exosomes, including biological, chemical, and physical techniques. Biological methods involve the genetic engineering of exosome-secreting cells, whereby cells are genetically modified to produce exosomes with desired characteristics (37). Chemical methods rely on the conjugation of diverse chemical substances onto the exosomal surface, enabling the targeting of specific molecules or cell types. Physical techniques, such as sonication, electroporation, extrusion, freeze-thaw cycles, cell membrane permeabilization, and hypotonic dialysis, are utilized to load specific "cargo" into the exosomes (38). The genetic engineering of exosomes, aimed at regulating their formation, secretion, and intercellular communication, holds significant potential to enhance their efficacy and effectiveness across various applications. This approach involves the genetic modification of cells, exosome precursors, and the exosomes themselves, enabling the expression of functional molecules on the exosomal membrane or their encapsulation within the exosome (39).

Artificial exosomes

While offering numerous advantages, including biocompatibility, biological origin, and inherent functionality, natural exosomes also present significant challenges, such as low yields, costly and inefficient isolation procedures, and high structural complexity. These limitations have prompted researchers to develop artificial exosomes as a viable alternative (40). Artificial exosomes primarily include hybrid exosomes and exosome-mimics. Hybrid exosomes are formed by fusing exosomes with liposomes, resulting in a chimeric structure that leverages the benefits of both systems. In

contrast, exosome-mimics constitute a distinct category of artificial exosomes developed as alternatives to their natural counterparts (41). Although chemical conjugation and exosome-liposome fusion offer innovative engineering pathways, they raise concerns regarding potential toxicity. Furthermore, the inherent variability in size, composition, and bioactivity remains a significant hurdle in achieving the standardization required for seamless clinical application of artificial exosomes (40).

COMPARATION OF EXOSOMES OF DIFFERENT ORIGIN

Considering the differences in their origin, composition, functionality, and associated risks, the comparative characteristics of natural and artificial/engineered exosomes are summarized in Table 1, facilitating a comprehensive assessment of their respective advantages and limitations within therapeutic applications.

Table 1. Comparative characteristics of natural and artificial exosomes (7, 34, 41)

Characteristics	Animal-Derived Exosomes	Plant-Derived Exosomes	Artificial / Engineered Exosomes
Particle Size	30–150 nm	50–500 nm	30–200 nm (depending on modification)
Composition	Proteins: Targeted fusion proteins; Heat shock proteins; Membrane transporters; ALIX, TSG101, CD9, CD63	Proteins: Actin; Proteolytic enzymes; Aquaporin; Reticulin heavy chain; Heat shock proteins	Proteins: Modified fusion proteins; targeting ligands; supplemental therapeutic proteins or enzymes
	Lipids: Cholesterol; Sphingomyelin; Glycosphingolipids; Ceramides	Lipids: Digalactosyl diacylglycerol; Phosphatidylethanolamine; Phosphatidic acid	Lipids: Similar to natural exosomes; optional lipid modification for stability or targeted delivery
	Nucleic Acids: mRNA, miRNAs, lncRNAs	Nucleic Acids: miRNAs	Nucleic Acids: Specific therapeutic miRNAs, siRNAs, mRNAs, or other genetic material
Origin	Mammalian cells (MSCs*, immune cells) and biofluids (plasma, milk)	Edible plants Ginger - <i>Zingiber officinale</i> Grapefruit - <i>Citrus × paradise</i> Grapes - <i>Vitis vinifera</i>	Synthetically engineered (lipids + proteins) or cell-derived hybrids
Functionality	Facilitates efficient delivery of hydrophobic pharmaceuticals; regenerative properties	Immunomodulatory and anti-inflammatory effects	Precise cell/tissue targeting; enhanced therapeutic efficacy

Risks	Immunogenicity; potential viral transmission	Lower risks compared to animal-derived exosomes	Potential immunogenicity based on modifications; possible adverse interactions with target tissues; challenges in standardization and stability
-------	--	---	---

*MSCs – mesenchymal stem cells

THE ROLE OF EXOSOMES IN TISSUE REGENERATION AND WOUND HEALING

In recent years, the role of exosomes in the wound healing process has garnered increasing interest (42). These versatile vesicles play a key role in intercellular communication and in regulating target-cell functions by transporting proteins and nucleic acids. For tissue regeneration, exosomes offer several distinct advantages, including high stability, a low risk of immunogenicity, targeted delivery, and the potential for controlled dosage (43). Current research highlights the efficacy of exosome-based therapy across all stages of wound healing, actively accelerating the regenerative process (42).

Since they comprise proteins, nucleic acids, lipids, and growth factors, exosomes modulate pivotal cellular processes in wound healing, including inflammation, angiogenesis, cell proliferation, and extracellular matrix remodeling (44). Existing research suggests that exosomes influence the secretion of dermal fibroblasts, enhancing the synthesis and release of collagen and elastin, which in turn facilitates re-epithelialization (45-47). Furthermore, exosomes regulate inflammation and promote macrophage polarization toward the M2 phenotype. They also stimulate angiogenesis, direct cell migration and proliferation, collagen synthesis, and tissue remodeling to minimize scarring (43,48). Numerous studies have demonstrated the therapeutic potential of exosomes across various stages of wound healing. During the inflammatory phase, exosomes modulate the inflammatory microenvironment by inhibiting immune response, thereby reducing inflammation while simultaneously promoting the survival and regeneration of damaged cells (6). Possible biological pathways underlying exosome effects include immune modulation, reduction of oxidative stress, and prevention of apoptosis and necrosis in damaged cells, supporting their survival and repair. In the proliferation phase, exosomes accelerate wound closure by activating endothelial cells and fibroblasts, thus initiating angiogenesis and extracellular matrix (ECM) deposition (6,50). Angiogenesis is vital to the wound-healing process, as it facilitates nutrient transport, maintains

oxygen homeostasis, and supports tissue regeneration. This complex process involves vascular endothelial cells and various angiogenesis-related factors (51,52). Exosomes are recognized as potent enhancers of endothelial cell proliferation and migration, as well as angiogenesis, via multiple signaling pathways, significantly improving local vascular regeneration of damaged areas (53). Finally, during the remodeling phase, exosomes balance the ratio between matrix metalloproteinases and their inhibitors, leading to optimized wound resolution (6,52).

The comparative characteristics of key natural and artificial exosomes investigated for use in wound healing purposes are summarized in Table 2.

Table 2. Selected overview of research on the role of exosomes in tissue regeneration and wound healing, categorized by exosomal origin

ANIMAL-DERIVED EXOSOMES		
Characteristics	Contribute to wound healing by modulating inflammation and oxidative stress, stimulating cell proliferation and migration, promoting angiogenesis, and orchestrating extracellular matrix remodeling. Furthermore, they serve as intrinsic delivery systems for the targeted transport of bioactive molecules.	[53-55]
Examples and key findings	<p>Deer Antler Stem Cell Exosomes: Accelerated wound healing and promotion of the regeneration of skin structures (facilitating the formation of collagen in a "basket-weave" orientation) by inhibiting the fibroblast transition into myofibroblast.</p> <p>Rat Mesenchymal Stromal Cell Exosomes: Accelerated wound healing achieved through combined effects on cell proliferation, migration, angiogenesis, and extracellular matrix remodeling.</p> <p>Rat Hair Follicle Stem Cell Exosomes: Accelerated wound healing mediated by bioactive molecules involved in cell migration and proliferation, as well as extracellular matrix remodeling.</p> <p>Rat and Mouse Adipose-Derived Stem Cell Exosomes: Enhanced angiogenesis, epithelialization, and collagen deposition</p>	<p>[56]</p> <p>[57]</p> <p>[58]</p> <p>[59, 60]</p>
PLANT-DERIVED EXOSOMES		
Characteristics	Due to their unique structural properties, they can be efficiently internalized by cells, enabling their specific biochemical cargo to be delivered to target cells. They are inherently biocompatible and non-toxic, posing a minimal risk of immunogenic reactions, and offer a cost-effective and sustainable production platform compared to animal-derived or artificial alternatives. The molecular components of plant exosomes, including proteins, lipids, and nucleic acids, can stimulate cell proliferation, migration, and differentiation, supporting the formation and repair of new tissue, ultimately accelerating the	[61-64]

	healing of chronic wounds.	
Examples and key findings	Common wheat - <i>Triticum aestivum</i>	[65]
	Grapefruit – <i>Citrus x paradise</i>	[66]
	Goldenberry – <i>Physalis peruviana</i>	[67]
	Aloe Vera – <i>Aloe vera</i>	Promoted wound healing by enhancing angiogenesis, epithelialization, and collagen deposition.
	Tomato – <i>Solanum lycopersicum</i>	[68]
	Indian mulberry - <i>Morinda officinalis</i>	[69]
		[70]
	ARTIFICIAL EXOSOMES	
Characteristics	Artificial exosomes enable the controlled and targeted delivery of bioactive molecules while promoting dermal fibroblast proliferation and migration, angiogenesis, and collagen organization, while reducing immunogenicity. A key advantage is their compatibility with various biomaterials, making them an effective and safe approach to advanced tissue regeneration and wound healing.	
Examples and key findings	Human Umbilical Mesenchymal Stem Cell Exosome Mimetics	Promotion of wound healing by stimulating the proliferation and migration of dermal fibroblasts.
	MiR146a-loaded Engineered Exosomes Released from Silk Fibroin Patch	Enhanced healing outcomes achieved through miRNA loading, which actively modulates inflammatory pathways and promotes tissue regeneration.
	Neutrophil-Derived Exosome Mimetics	Improved wound repair utilizing exosome mimetic-hydrogel hybrids

Despite functional variations arising from their diverse cellular origins, exosomes exert similar therapeutic effects on wound repair. Plant-derived exosomes are characterized by their inherent biocompatibility, non-toxicity, and minimal immunogenic risk. Animal-derived exosomes, such as those sourced from mesenchymal stem cells, demonstrate significant efficacy in accelerating wound healing by acting as cellular messengers that promote tissue repair and regeneration. Concurrently, engineered and artificial exosomes facilitate the targeted delivery of bioactive molecules, offering enhanced stability, precise cargo control, and the ability to integrate with biomaterials, thereby amplifying their therapeutic impact (42). Nevertheless, the clinical translation of exosomes, regardless of their origin, remains in its infancy. Critical challenges must be addressed before widespread implementation, including low yields, costly and time-consuming manufacturing processes, and rigorous quality control requirements that necessitate extensive clinical validation (36).

CONCLUSION

Exosomes exhibit remarkable heterogeneity in their origin and physicochemical properties, positioning them as great candidates for a wide range of applications in regenerative medicine. Both natural and artificial exosomes exhibit promising effects in wound healing by modulating various physiological processes, including the regulation of inflammation, induction of angiogenesis, stimulation of cellular proliferation and migration, synthesis of the extracellular matrix, and the reduction of scar formation. Despite the existence of substantial experimental and preclinical evidence of the efficacy of exosomes, further research is essential to precisely quantify their therapeutic potential, optimize production and isolation strategies, standardize protocols, and test their safety and efficacy in clinical settings. In the future, the development of scalable, stable, and functionally optimized exosome-based therapies could provide a perspective strategy for enhancing tissue regeneration and the overall quality of wound healing.

ACKNOWLEDGEMENT

This research was supported by the Science Fund of the Republic of Serbia, program PRISMA, #7617, Multilevel approach to study chronic wounds based on clinical and biological assessment with development of novel personalized therapeutic approaches using *in vitro* and *in vivo* experimental models – CHRONOWOUND, and by the Ministry of Science, Technological Development and Innovations of the Republic of Serbia (451-03-137/2025-03/200113).

LITERATURE

1. Baker P, Huang C, Radi R, Moll SB, Jules E, Arbiser JL. Skin Barrier Function: The Interplay of Physical, Chemical, and Immunologic Properties. *Cells* 2023;12(23):2745. doi: 10.3390/cells12232745

<https://pubmed.ncbi.nlm.nih.gov/38067173/>

2. Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N. Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. *Cells* 2022;11(15):2439. doi: 10.3390/cells11152439

<https://pubmed.ncbi.nlm.nih.gov/35954282/>

3. Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. *Pharmaceutics* 2020;12(8):735. doi: 10.3390/pharmaceutics12080735

<https://pubmed.ncbi.nlm.nih.gov/32764269/>

4. Secco J, Spinazzola E, Pittarello M, Ricci E, Pareschi F. Clinically validated classification of chronic wounds method with memristor-based cellular neural network. *Sci Rep.* 2024 Dec 28;14(1):30839. doi: 10.1038/s41598-024-81521-9.

<https://pubmed.ncbi.nlm.nih.gov/39730505/>

5. Damnjanović I, Tomić M, Jović N, Savić V, Damnjanović Z, Najman S, et al. In vitro wound healing activity of alpha-lipoic acid. *Acta Medica Medianae* 2025;64(2):64–70. doi: 10.5633/amm.2025.0207

<https://scindeks.ceon.rs/article.aspx?artid=0365-44782502064D&lang=en>

6. Prasai A, Jay JW, Jupiter D, Wolf SE, El Ayadi A. Role of Exosomes in Dermal Wound Healing: A Systematic Review. *J Invest Dermatol* 2022;142:662-678.e8. doi: 10.1016/j.jid.2021.07.167.

<https://pubmed.ncbi.nlm.nih.gov/34461128/>

7. Zhang L, Shi C, Yan L, Zhang X, Ji X, Li L, et al. The Application of Exosomes From Different Sources Loaded with Natural Small-Molecule Compounds in Disease. *Int J Nanomedicine* 2025;20:12363-12392. doi: 10.2147/IJN.S542641

<https://pubmed.ncbi.nlm.nih.gov/41112945/>

8. Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. *Trends Cell Biol* 2023;33(8):667-681. doi: 10.1016/j.tcb.2023.01.002

<https://pubmed.ncbi.nlm.nih.gov/36737375/>

9. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. *J Cell Biol*. 1983; 97(2):329-39. doi: 10.1083/jcb.97.2.329

<https://pubmed.ncbi.nlm.nih.gov/6309857/>

10. Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. *Cell* 1983; 33 (3): 967-78. doi: 10.1016/0092-8674(83)90040-5

<https://pubmed.ncbi.nlm.nih.gov/6309857/>

11. Johnstone RM. Revisiting the road to the discovery of exosomes. *Blood Cells Mol Dis* 2005; 34 (3), 214-9. doi: 10.1016/j.bcmd.2005.03.002

<https://pubmed.ncbi.nlm.nih.gov/15885604/>

12. Povero D, Panera N, Eguchi A, Johnson CD, Papouchado BG, de Araujo Horcel L, et al. Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR- γ . *Cell Mol Gastroenterol Hepatol* 2015;1(6):646-663.e4. doi: 10.1016/j.jcmgh.2015.07.007

<https://pubmed.ncbi.nlm.nih.gov/26783552/>

13. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. *Nature* 2015;527(7576):100-104. doi: 10.1038/nature15376

<https://pubmed.ncbi.nlm.nih.gov/26479035/>

14. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. *Proc Natl Acad Sci USA* 2014;111(41):14888-93. doi: 10.1073/pnas.1408301111

<https://pubmed.ncbi.nlm.nih.gov/25267620/>

15. Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles. *Int J Mol Sci* 2016;17(2):171. doi: 10.3390/ijms17020171

<https://pubmed.ncbi.nlm.nih.gov/26861302/>

16. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. *Annu Rev Cell Dev Biol* 2014;30:255-89. doi: 10.1146/annurev-cellbio-101512-122326

<https://pubmed.ncbi.nlm.nih.gov/25288114/>

17. Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, et al. Extracellular vesicles as tools and targets in therapy for diseases. *Signal Transduct Target Ther* 2024;9(1):27. doi: 10.1038/s41392-024-01735-1

<https://pubmed.ncbi.nlm.nih.gov/38311623/>

18. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. *J Cell Biol* 1983;97(2):329-39. doi: 10.1083/jcb.97.2.329

<https://pubmed.ncbi.nlm.nih.gov/6309857/>

19. Elliott RO, He M. Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. *Pharmaceutics* 2021;13(1):122.

<https://pubmed.ncbi.nlm.nih.gov/33477972/>

20. Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. *Int. J. Nanomed.* 2020, 15, 6917–6934. doi: 10.3390/pharmaceutics13010122

<https://pubmed.ncbi.nlm.nih.gov/33061359/>

21. Xu M, Yang Q, Sun X, Wang Y. Recent Advancements in the Loading and Modification of Therapeutic Exosomes. *Front Bioeng Biotechnol* 2020;8:586130. doi: 10.3389/fbioe.2020.586130.

<https://pubmed.ncbi.nlm.nih.gov/33262977/>

22. Yang XX, Sun C, Wang L, Guo XL. New insight into isolation, identification techniques and medical applications of exosomes. *J Control Release* 2019;308:119-129. doi: 10.1016/j.jconrel.2019.07.021

<https://pubmed.ncbi.nlm.nih.gov/31325471/>

23. Rider MA, Hurwitz SN, Meckes DG Jr. ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. *Sci Rep* 2016;6:23978. doi: 10.1038/srep23978

<https://pubmed.ncbi.nlm.nih.gov/27068479/>

24. Chen J, Li P, Zhang T, Xu Z, Huang X, Wang R, et al. Review on Strategies and Technologies for Exosome Isolation and Purification. *Front Bioeng Biotechnol* 2022;9:811971. doi: 10.3389/fbioe.2021.811971

<https://pubmed.ncbi.nlm.nih.gov/35071216/>

25. Zhou QF, Cai YZ, Lin XJ. The dual character of exosomes in osteoarthritis: Antagonists and therapeutic agents. *Acta Biomater* 2020;105:15-25. doi: 10.1016/j.actbio.2020.01.040

<https://pubmed.ncbi.nlm.nih.gov/32006653/>

26. Kučuk N, Primožič M, Knez Ž, Leitgeb M. Exosomes Engineering and Their Roles as Therapy Delivery Tools, Therapeutic Targets, and Biomarkers. *Int J Mol Sci* 2021;22(17):9543. doi: 10.3390/ijms22179543

<https://pubmed.ncbi.nlm.nih.gov/34502452/>

27. Mun JG, Song DH, Kee JY, Han Y. Recent Advances in the Isolation Strategies of Plant-Derived Exosomes and Their Therapeutic Applications. *Curr Issues Mol Biol* 2025;47(3):144. doi: 10.3390/cimb47030144.

<https://pubmed.ncbi.nlm.nih.gov/40136398/>

28. van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. *Nat Rev Mol Cell Biol* 2018;19(4):213-228. doi: 10.1038/nrm.2017.125

<https://pubmed.ncbi.nlm.nih.gov/29339798/>

29. Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. *Nat Cell Biol* 2019;21(1):9-17. doi: 10.1038/s41556-018-0250-9

<https://pubmed.ncbi.nlm.nih.gov/30602770/>

30. Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. *Cell Mol Neurobiol*. 2016 Apr;36(3):301-12. doi: 10.1007/s10571-016-0366-z.

<https://pubmed.ncbi.nlm.nih.gov/27053351/>

31. Meng F, Xue X, Yin Z, Gao F, Wang X, Geng Z. Research Progress of Exosomes in Bone Diseases: Mechanism, Diagnosis and Therapy. *Front Bioeng Biotechnol* 2022;10:866627. doi: 10.3389/fbioe.2022.866627.

<https://pubmed.ncbi.nlm.nih.gov/35497358/>

32. Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery. *Pharmaceutics* 2018;10(4):218. doi: 10.3390/pharmaceutics10040218.

<https://pubmed.ncbi.nlm.nih.gov/30404188/>

33. An Q, van Bel AJ, Hückelhoven R. Do plant cells secrete exosomes derived from multivesicular bodies? *Plant Signal Behav* 2007;2(1):4-7. doi: 10.4161/psb.2.1.3596

<https://pubmed.ncbi.nlm.nih.gov/19704795/>

34. Mu N, Li J, Zeng L, You J, Li R, Qin A, et al. Plant-Derived Exosome-Like Nanovesicles: Current Progress and Prospects. *Int J Nanomedicine* 2023;18:4987-5009. doi: 10.2147/IJN.S420748

<https://pubmed.ncbi.nlm.nih.gov/37693885/>

35. Wang J, Ding Y, Wang J, Hillmer S, Miao Y, Lo SW, et al. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in *Arabidopsis* and tobacco cells. *Plant Cell* 2010;22(12):4009-30. doi: 10.1105/tpc.110.080697

<https://pubmed.ncbi.nlm.nih.gov/21193573/>

36. Ye H, Wang F, Xu G, Shu F, Fan K, Wang D. Advancements in engineered exosomes for wound repair: current research and future perspectives. *Front Bioeng Biotechnol* 2023;11:1301362. doi: 10.3389/fbioe.2023.1301362

<https://pubmed.ncbi.nlm.nih.gov/38033824/>

37. Rayamajhi S, Aryal S. Surface functionalization strategies of extracellular vesicles. *J Mater Chem B* 2020;8(21):4552-4569. doi: 10.1039/d0tb00744g

<https://pubmed.ncbi.nlm.nih.gov/32377649/>

38. Wu P, Zhang B, Ocansey DKW, Xu W, Qian H. Extracellular vesicles: A bright star of nanomedicine. *Biomaterials* 2021;269:120467. doi: 10.1016/j.biomaterials.2020.120467

<https://pubmed.ncbi.nlm.nih.gov/33189359/>

39. Mondal J, Pillarisetti S, Junnuthula V, Saha M, Hwang SR, Park IK, et al. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. *J Control Release* 2023;353:1127-1149. doi: 10.1016/j.jconrel.2022.12.027

<https://pubmed.ncbi.nlm.nih.gov/36528193/>

40. Bahadorani M, Nasiri M, Dellinger K, Aravamudhan S, Zadegan R. Engineering Exosomes for Therapeutic Applications: Decoding Biogenesis, Content Modification, and Cargo Loading Strategies. *Int J Nanomedicine* 2024;19:7137-7164. doi: 10.2147/IJN.S464249

<https://pubmed.ncbi.nlm.nih.gov/39050874/>

41. Li YJ, Wu JY, Liu J, Xu W, Qiu X, Huang S, et al. Artificial exosomes for translational nanomedicine. *J Nanobiotechnology* 2021;19(1):242. doi: 10.1186/s12951-021-00986-2

<https://pubmed.ncbi.nlm.nih.gov/34384440/>

42. Lu S, Lu L, Liu Y, Li Z, Fang Y, Chen Z, et al. Native and engineered extracellular vesicles for wound healing. *Front Bioeng Biotechnol* 2022;10:1053217. doi: 10.3389/fbioe.2022.1053217

<https://pubmed.ncbi.nlm.nih.gov/36568307/>

43. Yang G, Waheed S, Wang C, Shekh M, Li Z, Wu J. Exosomes and Their Bioengineering Strategies in the Cutaneous Wound Healing and Related Complications: Current Knowledge and Future Perspectives. *Int J Biol Sci* 2023;19(5):1430-1454. doi: 10.7150/ijbs.80430

<https://pubmed.ncbi.nlm.nih.gov/37056923/>

44. Rasti M, Parniaei AH, Dehghani L, Nasr Esfahani S, Mirhendi H, Yazdani V, et al. Enhancing the wound healing process through local injection of exosomes derived from blood serum: An in vitro and in vivo assessment. *Regen Ther* 2024;26:281-289. doi: 10.1016/j.reth.2024.06.004

<https://pubmed.ncbi.nlm.nih.gov/38993537/>

45. Tienda-Vázquez MA, Hanel JM, Márquez-Arteaga EM, Salgado-Álvarez AP, Scheckhuber CQ, Alanis-Gómez JR, et al. Exosomes: A Promising Strategy for Repair, Regeneration and Treatment of Skin Disorders. *Cells* 2023;12(12):1625. doi: 10.3390/cells12121625

<https://pubmed.ncbi.nlm.nih.gov/37371095/>

46. Yang GH, Lee YB, Kang D, Choi E, Nam Y, Lee KH, et al. Overcome the barriers of the skin: exosome therapy. *Biomater Res* 2021;25(1):22. doi: 10.1186/s40824-021-00224-8

<https://pubmed.ncbi.nlm.nih.gov/34217362/>

47. Thakur A, Shah D, Rai D, Parra DC, Pathikonda S, Kurilova S, et al. Therapeutic values of exosomes in cosmetics, skin care, tissue regeneration, and dermatological diseases. *Cosmetics* 2023;10(2):65. doi.org/10.3390/cosmetics10020065

<https://www.mdpi.com/2079-9284/10/2/65>

48. Kang T, Jones TM, Naddell C, Bacanamwo M, Calvert JW, Thompson WE, et al. Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31. *Stem Cells Transl Med* 2016;5(4):440-50. doi: 10.5966/sctm.2015-0177

<https://pubmed.ncbi.nlm.nih.gov/26933040/>

49. Shao M, Jin X, Chen S, Yang N, Feng G. Plant-derived extracellular vesicles-a novel clinical anti-inflammatory drug carrier worthy of investigation. *Biomed Pharmacother* 2023;169:115904. doi: 10.1016/j.biopha.2023.115904

<https://pubmed.ncbi.nlm.nih.gov/37984307/>

50. Lv H, Liu H, Sun T, Wang H, Zhang X, Xu W. Exosome derived from stem cell: A promising therapeutics for wound healing. *Front Pharmacol* 2022;13:957771. doi: 10.3389/fphar.2022.957771

<https://pubmed.ncbi.nlm.nih.gov/36003496/>

51. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. *Physiol Rev* 2019;99(1):665-706. doi: 10.1152/physrev.00067.2017

<https://pubmed.ncbi.nlm.nih.gov/30475656/>

52. Sousa P, Lopes B, Sousa AC, Moreira A, Coelho A, Alvites R, et al. Advancements and Insights in Exosome-Based Therapies for Wound Healing: A Comprehensive Systematic Review (2018-June 2023). *Biomedicines* 2023;11(8):2099. doi: 10.3390/biomedicines11082099

<https://pubmed.ncbi.nlm.nih.gov/37626596/>

53. Yan L, Fan D, Yang J, Wang J, Hu X, Zhang X, et al. Fibroblast exosomes promote wound healing and improve the quality of healed skin via miR-29a-3p-mediated KEAP1/Nrf2 pathway activation. *Burns Trauma* 2025;13:tkaf035. doi: 10.1093/burnst/tkaf035

<https://pubmed.ncbi.nlm.nih.gov/41146891/>

54. Zhou C, Zhang B, Yang Y, Jiang Q, Li T, Gong J, et al. Stem cell-derived exosomes: emerging therapeutic opportunities for wound healing. *Stem Cell Res Ther* 2023;14(1):107. doi: 10.1186/s13287-023-03345-0

<https://pubmed.ncbi.nlm.nih.gov/37101197/>

55. Chen Y, Yin W, Liu Z, Lu G, Zhang X, Yang J, Huang Y, Hu X, Chen C, Shang R, Hu W, Wang J, Shen HM, Hu J, Luo G, He W. Exosomes derived from fibroblasts enhance skin wound angiogenesis by regulating HIF-1 α /VEGF/VEGFR pathway. *Burns Trauma*. 2025 May 27;13:tkae071. doi: 10.1093/burnst/tkae071

<https://pubmed.ncbi.nlm.nih.gov/40433567/>

56. Zhang G, Wang D, Ren J, Li J, Guo Q, Shi L, Li C. Antler stem cell-derived exosomes promote regenerative wound healing via fibroblast-to-myofibroblast transition inhibition. *J Biol Eng* 2023;17(1):67. doi: 10.1186/s13036-023-00386-0

<https://pubmed.ncbi.nlm.nih.gov/37940994/>

57. Ahmed AAM, Hafez MS, Hamam GG, Ibrahim GAE. Mesenchymal Stem Cell-derived Exosomes Improved Healing of Cutaneous Wound in a Rat Model. *J Microsc Ultrastruct*. 2024 Feb 21;13(2):68-79. doi: 10.4103/jmau.jmau_114_23

<https://pubmed.ncbi.nlm.nih.gov/40635868/>

58. Sousa P, Lopes B, Sousa AC, de Sousa Moreira A, Rêma A, Alvites R, et al. Rat Hair Follicle Stem Cell-Derived Exosomes: Isolation, Characterization and Comparative Analysis of Their In Vitro Wound Healing Potential. *Int J Mol Sci* 2025;26(11):5081. doi: 10.3390/ijms26115081

<https://pubmed.ncbi.nlm.nih.gov/40507892/>

59. Shafei S, Khanmohammadi M, Heidari R, Ghanbari H, Taghdiri Nooshabadi V, et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study. *J Biomed Mater Res A* 2020;108(3):545-556. doi: 10.1002/jbm.a.36835

<https://pubmed.ncbi.nlm.nih.gov/31702867/>

60. Shi R, Jin Y, Hu W, Lian W, Cao C, Han S, et al. Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy. *Am J Physiol Cell Physiol* 2020;318(5):C848-C856. doi: 10.1152/ajpcell.00041.2020

<https://pubmed.ncbi.nlm.nih.gov/32159361/>

61. Wu W, Zhang B, Wang W, Bu Q, Li Y, Zhang P, et al. Plant-Derived Exosome-Like Nanovesicles in Chronic Wound Healing. *Int J Nanomedicine* 2024;19:11293-11303. doi: 10.2147/IJN.S485441

<https://pubmed.ncbi.nlm.nih.gov/39524918/>

62. Langellotto MD, Rassu G, Serri C, Demartis S, Giunchedi P, Gavini E. Plant-derived extracellular vesicles: a synergetic combination of a drug delivery system and a source of natural bioactive compounds. *Drug Deliv Transl Res* 2025;15(3):831-845. doi: 10.1007/s13346-024-01698-4

<https://pubmed.ncbi.nlm.nih.gov/39196501/>

63. Liu H, Dong T, Dong C, Yang F, Zhou Q, Guan C, et al. Plant-derived exosome-like nanovesicles: a novel therapeutic perspective for skin diseases. *J Nanobiotechnology* 2025;23(1):640. doi: 10.1186/s12951-025-03715-1.

<https://pubmed.ncbi.nlm.nih.gov/41074041/>

64. Adel N, Kolenda J, Thulesen J, Stankovic N, Llano F, Thulesen IV, et al. Regenerative Potential of Various Plant-Derived Exosome Injections in Laser-Induced Skin Wound Healing in a Rabbit Model. *J Cosmet Dermatol* 2025;24(12):e70561. doi: 10.1111/jocd.70561

<https://pubmed.ncbi.nlm.nih.gov/41277469/>

65. Şahin F, Koçak P, Güneş MY, Özkan İ, Yıldırım E, Kala EY. In Vitro Wound Healing Activity of Wheat-Derived Nanovesicles. *Appl Biochem Biotechnol* 2019;188(2):381-394. doi: 10.1007/s12010-018-2913-1

<https://pubmed.ncbi.nlm.nih.gov/30474796/>

66. Savcı Y, Kırbaş OK, Bozkurt BT, Abdik EA, Taşlı PN, Şahin F, et al. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing. *Food Funct.* 2021;12(11):5144-5156. doi: 10.1039/d0fo02953j

<https://pubmed.ncbi.nlm.nih.gov/33977960/>

67. Natania F, Iriawati I, Ayuningtyas FD, Barlian A. Potential of Plant-derived Exosome-like Nanoparticles from *Physalis peruviana* Fruit for Human Dermal Fibroblast Regeneration and Remodeling. *Pharm Nanotechnol* 2025;13(2):358-371. doi: 10.2174/0122117385281838240105110106

<https://pubmed.ncbi.nlm.nih.gov/38243927/>

68. Kim MK, Choi YC, Cho SH, Choi JS, Cho YW. The Antioxidant Effect of Small Extracellular Vesicles Derived from Aloe vera Peels for Wound Healing. *Tissue Eng Regen Med* 2021;18(4):561-571. doi: 10.1007/s13770-021-00367-8

<https://pubmed.ncbi.nlm.nih.gov/34313971/>

69. Daniello V, De Leo V, Lasalvia M, Hossain MN, Carbone A, Catucci L, Zefferino R, Ingrosso C, Conese M, Di Gioia S. *Solanum lycopersicum* (Tomato)-Derived Nanovesicles Accelerate Wound

Healing by Eliciting the Migration of Keratinocytes and Fibroblasts. *Int J Mol Sci* 2024;25(5):2452. doi: 10.3390/ijms25052452.

<https://pubmed.ncbi.nlm.nih.gov/38473700/>

70. Zhao Q, Hu QX, Li JP, Su HB, Li ZY, He J, You Q, Yang YL, Zhang HT, Zhao KW. Morinda Officinalis-Derived Extracellular Vesicle-like Particles Promote Wound Healing via Angiogenesis. *ACS Appl Mater Interfaces* 2025;17(21):30454-30464. doi: 10.1021/acsami.5c01640

<https://pubmed.ncbi.nlm.nih.gov/40377182/>

71. Morabbi A, Karimian M. Therapeutic potential of exosomal lncRNAs derived from stem cells in wound healing: focusing on mesenchymal stem cells. *Stem Cell Res Ther* 2025;16(1):62. doi: 10.1186/s13287-025-04200-0

<https://pubmed.ncbi.nlm.nih.gov/39934913/>

72. Hu W, Wang W, Chen Z, Chen Y, Wang Z. Engineered exosomes and composite biomaterials for tissue regeneration. *Theranostics* 2024;14(5):2099-2126. doi: 10.7150/thno.93088

<https://pubmed.ncbi.nlm.nih.gov/38505616/>

73. Zhu J, Liu Z, Wang L, Jin Q, Zhao Y, Du A, et al. Exosome Mimetics-Loaded Hydrogel Accelerates Wound Repair by Transferring Functional Mitochondrial Proteins. *Front Bioeng Biotechnol* 2022;10:866505. doi: 10.3389/fbioe.2022.866505

<https://pubmed.ncbi.nlm.nih.gov/35669057/>

74. Li Q, Hu W, Huang Q, Yang J, Li B, Ma K, et al. MiR146a-loaded engineered exosomes released from silk fibroin patch promote diabetic wound healing by targeting IRAK1. *Signal Transduct Target Ther* 2023;8(1):62. doi: 10.1038/s41392-022-01263-w

<https://pubmed.ncbi.nlm.nih.gov/36775818/>

75. Yu Y, Jin H, Li L, Zhang X, Zheng C, Gao X, et al. An injectable, activated neutrophil-derived exosome mimetics/extracellular matrix hybrid hydrogel with antibacterial activity and wound healing promotion effect for diabetic wound therapy. *J Nanobiotechnology* 2023;21(1):308. doi: 10.1186/s12951-023-020

<https://pubmed.ncbi.nlm.nih.gov/37649022/>