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Wound healing, particularly the management of chronic wounds, remains a major global health
challenge due to its complexity and the limitations of current treatments. Exosomes, lipid-bound
vesicles and the smallest subpopulation of extracellular vesicles (EVs), have emerged as highly
promising therapeutic tools. These vesicles can be classified by their origin as natural-derived

(animal or plant-derived), modified, or artificial. They exert a wide range of biological effects
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essential for tissue regeneration, including anti-inflammatory, immunomodulatory, and antioxidant
properties, as well as promoting angiogenesis, intercellular communication, and extracellular
matrix remodeling. Furthermore, the capacity of exosomes for targeted drug delivery and
epigenetic regulation positions them as versatile candidates for treating various disorders. This
review discusses and summarizes the characteristics of exosomes from diverse origins, providing

an overview of their primary roles in wound healing and tissue regeneration.
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Zarastanje rana, a narocito leCenje hroni¢nih rana, predstavlja znacajan globalni zdravstveni izazov
zbog svojelkempleksnosti'i ograni¢enja postojecih terapijskih opcija. Egzozomi, lipidne vezikule i
najmanja_subpopulacija ekstracelularnih vezikula (EV), postali su veoma perspektivno terapijsko
sredstvo. Prema poreklu, ove vezikule se klasifikuju na prirodne (Zivotinjskog ili biljnog porekla),
modifikovane i sinteticke (vestacke). One ispoljavaju Sirok spektar bioloskih efekata neophodnih za
regeneraciju tkiva, kao Sto su anti-inflamatorna, imunomodulatorna i antioksidativna svojstva, uz
stimulaciju angiogeneze, meducelijske komunikacije i remodeliranja ekstracelularnog matriksa.
Pored toga, sposobnost egzozoma za ciljanu isporuku lekova i epigenetsku regulaciju Cini ih

svestranim kandidatima za leCenje brojnih poremecaja. Ovaj rad analizira i sumira karakteristike



egzozoma razli¢itog porekla, uz poseban osvrt na njihovu ulogu u procesima zarastanja rana i

regeneracije tkiva.

Klju¢ne reci: egzozomi, zarastanje rana, regenerativna medicina
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INTRODUCTION

The skin is the largest organ of the human body, accounting for approximately 16% of total body
mass, and serves as a key barrier between internal tissues and the external environment.
Therefore, preserving skin integrity is essential for maintaining health, as skin plays a vital role in
homeostasis, protection against infections, and the prevention of fluid loss (1). Skin injuries or
wounds can seriously threaten the body's functionality, cause disability and psychological distress,

and pose a significant challenge to healthcare systems worldwide (2).

The skin healing process is mediated by coordinated cellular responses, extracellular matrix
remodeling, and the action of various growth factors, which restore the functional and anatomical
integrity of the skin (3). However, numerous factors can disrupt this process, leading to significant
delays; consequently, wounds often become resistant to standard therapeuticjapproaches (2). The
prevalence of acute and chronic wounds, often described as a "silent epidemic”, is a major global
health challenge, as it impairs the functional and structuralintegrity of the skin, affecting more
than 4% of the world's population due to various pathologies. In Europe, more than 10 million
patients are affected, and the annual economic burden on healthcare systems for their treatment

exceeds 4 billion euros (4).

Despite intensive research and efforts_to ‘enhance wound treatment methods, therapy remains a
significant clinical challenge, due in part to the complexity of assessing wound status and
managing the healing process. Consequently, developing innovative strategies to accelerate and
improve wound healing is crucial for further advances in medical practice and global health (5). In
this context, exosomes, as extracellular lipid-bound vesicles generated by eukaryotic cells or
engineered, carrying nucleic acids, proteins, lipids, and metabolites, have emerged in recent years
as a promising therapeutic option, attracting considerable attention from researchers and clinicians

due to their regenerative properties (6).

This review analyzes the therapeutic potential of exosomes from various sources in the wound
healing process, with a specific focus on the mechanisms by which these vesicles contribute to
tissue regeneration. Furthermore, in this review the characteristics of exosomes of different origin

are summarized and discussed.



THE DISCOVERY OF EXOSOMES

Initially, intercellular communication was described solely as resulting from direct cell-to-cell
contact or the release of soluble molecules, such as cytokines and hormones. However, the
discovery of extracellular vesicles (EVs) revealed an additional mechanism of cellular
communication (7). "Extracellular vesicles" is an umbrella term encompassing various subtypes.
EVs are a family of nanoparticles that includes exosomes, microvesicles, and apoptotic bodiesj the
latter being released during the cell death process. Secreted by nearly all cell types; EVs are

present in various body fluids, making them highly promising candidates for biomarker, detection

(8).

Although EVs research has expanded rapidly over the last decade, EVs were not immediately
embraced by the cell biology community upon their discovery in the 1980s. Early studies
suggesting that cells release EVs as a mechanism for debris removal were met with skepticism
(9,10), and these vesicles were often dismissed as experimental artifacts (11). EVs possess a lipid
bilayer that encapsulates cellular cargo, including proteins, DNA, and various RNA molecules. This
lipid membrane protects these molecules from degradation, facilitating their functional transfer
between cells. Notably, while it has been demonstrated that EVs-shuttled miRNAs can be functional
in recipient cells, their endogenous concentration remains remarkably low - approximately one
miRNA molecule per 100 vesicles (12-14). Nevertheless, the vast diversity of biomolecules within
EVs suggests a broad functional spectrum, and it is now established that EVs participate in

numerous physiologicaltand patholagical processes (15).

Three main groups off EVs are currently recognized: exosomes, microvesicles, and apoptotic
bodies. While, microvesicles and apoptotic bodies form through direct budding from the cell
membrane, exosomes originate within multivesicular bodies (MVBs) and are released when MVBs
fusenwith the cell membrane (16). Exosomes represent the smallest vesicle population (15,16). As
a subset of extracellular vesicles, they are endosomal in origin and range in size from 30 to several
hundred nanometers, depending on the cell source and the isolation methods employed (17). Due
to their unique biogenesis, molecular complexity, and functional versatility, they play a crucial role
in various cellular processes. Although the term "exosome" was first used in 1981 to describe
vesicles secreted from the cell surface, it was not until 1983 that they were formally discovered

(18). A pivotal moment for the field was the 2013 Nobel Prize in Physiology or Medicine, awarded
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for the discovery of vesicle transport mechanisms (19). This early potential has been realized over
the past three decades through the explosive growth of exosome biology, leading to the formation
of various specialized societies (such as the International Society for Extracellular Vesicles and the
American Society for Exosomes and Microvesicles), a dedicated journal (Journal of Extracellular
Vesicles), as well as various international symposia and congresses, and thousands of publications.
Today, exosomes are recognized not only as biomarkers but as active participants in disease
pathogenesis, diagnosis, and therapy. Their transition from basic science to clinical application‘is
the result of significant advancements in understanding exosome biology and the development of

modern analytical technologies (9).

EXOSOME ISOLATION TECHNIQUES

Various methods have been developed to isolate exosomes from diverse sources. The most widely
utilized technique is ultracentrifugation, which enables the recovery of high yields of isolated
exosomes (20,21). This method is based on differences inyparticle’density and size, offering a
relatively simple and cost-effective approach (22). Ultrafiltration is a rapid and convenient method
for separating exosomes by size, using membranées with specific pore sizes. However, the primary
limitations of this technique include membrane pore clogging and potential vesicle damage (23).
Additionally, chromatographic methods and polymer-induced precipitation are frequently employed
(23,24). Furthermore, innovative strategies based on the physicochemical properties of exosomes
have emerged, including selective capture using biopolymers, microfluidic techniques, and size-
based and hydrodynamic separation. Other advanced approaches involve hybridizing exosomes

with liposomes to enhance capture efficiency or delivery (24).

ORIGIN OF EXOSOMES

Exosomes exhibit ‘considerable heterogeneity, stemming from differences in their cellular origin
and “source., Although a single standardized classification is lacking, most studies categorize
exasomes into natural, modified, and artificial types (20). Natural exosomes are endogenous
nanomaterials secreted via exocytosis from a wide array of cells, including epithelial and
endothelial cells, mesenchymal stem cells, macrophages, dendritic cells, tumor cells, neurons,
oligodendrocytes, reticulocytes, mast cells, platelets, B and T lymphocytes, and astrocytes.
Furthermore, they can be isolated from plant cells and tissues and that is why natural exosomes

are usually divided into animal-derived exosomes and plant-derived exosomes (25). They are
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present in most body fluids, such as plasma, serum, urine, breast milk, seminal fluid, saliva, nasal
secretions, lymph, amniotic fluid, ascites, and cerebrospinal fluid (26). Due to their superior
biocompatibility and relatively straightforward, cost-effective isolation processes compared with
other sources, plant- and animal-derived exosomes are increasingly being considered as potential

natural therapeutic agents (27).

Animal-derived exosomes

Exosomes are generated through the endosomal pathway. They are formed with the invagination
of the plasma membrane and may subsequently fuse with vesicles originating. from the Golgi
apparatus and the endoplasmic reticulum (ER). Precursors to exosomes, known as intraluminal
vesicles (ILVs), are formed by the inward budding of the endosomal membrane, resulting in the
formation of multivesicular bodies (MVBs) (28,29). The Endosomal Sorting Complex Required for
Transport (ESCRT) comprises approximately 30 proteins organized into four major subcomplexes:
ESCRT-0, ESCRT-I, ESCRT-Il, and ESCRT-Ill. These subcomplexes play a pivotal role in sorting
proteins into ILVs inside the MVBs, thereby facilitating exosome formation (8). Following their
formation, MVBs follow one of two fates: they either fuse with lysosomes for cargo degradation or
fuse with the plasma membrane. Upon fusion with, the plasma membrane, ILVs are released into
the extracellular space and are formally termed exosomes" (30). Exosomes are derived from a
vast array of cellular sources (31); Animal-derived exosomes are primarily secreted by immune
cells (such as lymphocytes, erythrocytes, platelets, dendritic cells, and tumor cells), and are

present in various biological fluids (including urine, milk, and plasma) (32).

Plant-derived exosomes

The endocytic pathway in plant cells is not as clearly characterized as its animal counterpart.
Proteins, aretinternalized through the invagination, budding, and formation of transport vesicles on
the plasma membrane, which are directed as early endosomes toward the trans-Golgi Network
(TGN). A subunit of the TGN subsequently matures into MVBs (33). Most of the ESCRT complexes
responsible for the formation and release of intraluminal structures within MVBs are highly
conserved in plants and perform analogous functions. Despite a few distinctions, such as the
absence of ESCRT-0 and the presence of TOL proteins along with the unique FREE1 protein, the
mechanism of exosome formation in plants primarily occurs through the activity of ESCRT protein

complexes involved in the sorting and maturation of MVBs (16,34). Plants, however, also employ a
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distinct pathway for exosome production that involves double-membrane autophagosome-like
structures termed EXPOs (EXocyst-positive organelles). Although EXPOs share certain similarities
with autophagosomes, they do not follow the typical endocytic pathway, nor do they fuse with lytic
compartments. Instead, they fuse directly with the plasma membrane, releasing single-membrane
vesicles into the cell wall. These vesicles are considered exosomes generated via the EXPO
pathway, distinguishing them from animal exosomes, which are derived exclusively from MVBSs
(35). Plant exosomes can be isolated from a diverse range of sources, including roots,eaves,

fruits, and seeds.

Modified exosomes

Researchers have made significant efforts to integrate exosomes, into clinical practice.
Concurrently, the engineering of artificial exosomes is advancing rapidly, effectively replicating the
functional properties of natural exosomes (36). Various strategies are employed to create modified
exosomes, including biological, chemical, and physical technigues. Biological methods involve the
genetic engineering of exosome-secreting cells, whereby cells are genetically modified to produce
exosomes with desired characteristics (37). Chemical methods rely on the conjugation of diverse
chemical substances onto the exosomal surface, enabling the targeting of specific molecules or cell
types. Physical techniques, such as sonication, electroporation, extrusion, freeze-thaw cycles, cell
membrane permeabilization, and hypotonic dialysis, are utilized to load specific "cargo"” into the
exosomes (38). The geneticesengineering of exosomes, aimed at regulating their formation,
secretion, and intercellular communication, holds significant potential to enhance their efficacy and
effectiveness across various applications. This approach involves the genetic modification of cells,
exosome precursors, and the exosomes themselves, enabling the expression of functional

molecules on the exosomal membrane or their encapsulation within the exosome (39).

Artificial exosomes

While offering numerous advantages, including biocompatibility, biological origin, and inherent
functionality, natural exosomes also present significant challenges, such as low yields, costly and
inefficient isolation procedures, and high structural complexity. These limitations have prompted
researchers to develop artificial exosomes as a viable alternative (40). Artificial exosomes primarily
include hybrid exosomes and exosome-mimics. Hybrid exosomes are formed by fusing exosomes

with liposomes, resulting in a chimeric structure that leverages the benefits of both systems. In
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contrast, exosome-mimics constitute a distinct category of artificial exosomes developed as
alternatives to their natural counterparts (41). Although chemical conjugation and exosome-
liposome fusion offer innovative engineering pathways, they raise concerns regarding potential
toxicity. Furthermore, the inherent variability in size, composition, and bioactivity remains a
significant hurdle in achieving the standardization required for seamless clinical application of

artificial exosomes (40).

COMPARATION OF EXOSOMES OF DIFFERENT ORIGIN

Considering the differences in their origin, composition, functionality, and associated risks, the
comparative characteristics of natural and artificial/engineered exosomes are.summarized in Table
1, facilitating a comprehensive assessment of their respective advantages'and limitations within

therapeutic applications.

Table 1. Comparative characteristics of natural and artificial exasomes (7, 34, 41)

Animal-Derived
Exosomes

Characteristics

Plant-Derived Exosomes

Artificial / Engineered
Exosomes

Particle Size 30-150 nm

50-500 nm

30—-200 nm (depending
on modification)

Proteins: Targeted
fusion proteins;
Heat shock
proteins;
Membrane
transporters; ALIX,
TSG101, CD9,

Composition CD63

Proteins: Actin; Proteolytic
enzymes; Aquaporin;
Reticulin heavy chain; Heat
shock proteins

Proteins: Modified fusion
proteins; targeting
ligands; supplemental
therapeutic proteins or
enzymes

Lipids: Cholesterol;
Sphingomyelin;
Glycasphingolipids;
Ceramides

Lipids: Digalactosyl
diacylglycerol;
Phosphatidylethanolamine;
Phosphatidic acid

Lipids: Similar to natural

exosomes; optional lipid

modification for stability
or targeted delivery

Nucleic Acids:
MRNA, miRNAs,
IncRNAs

Nucleic Acids: miRNAs

Nucleic Acids: Specific
therapeutic miRNAs,
siRNAs, mRNAs, or

other genetic material

Mammalian cells
(MSCs*, immune
cells) and biofluids
(plasma, milk)

Origin

Edible plants
Ginger - Zingiber officinale
Grapefruit - Citrus x paradise
Grapes - Vitis vinifera

Synthetically engineered
(lipids + proteins) or
cell-derived hybrids

Facilitates efficient
delivery of
hydrophobic
pharmaceuticals;
regenerative
properties

Functionality

Immunomodulatory and anti-
inflammatory effects

Precise cell/tissue
targeting; enhanced
therapeutic efficacy
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Potential
immunogenicity based
on modifications;
Lower risks compared to possible adverse
animal-derived exosomes interactions with target
tissues; challenges in
standardization and
stability

Immunogenicity;
Risks potential viral
transmission

*MSCs — mesenchymal stem cells

THE ROLE OF EXOSOMES IN TISSUE REGENERATION AND WOUND HEALING

In recent years, the role of exosomes in the wound healing process has garnered increasing
interest (42). These versatile vesicles play a key role in intercellular communication and in
regulating target-cell functions by transporting proteins and nucleic acids. For tissue regeneration,
exosomes offer several distinct advantages, including high stability, a low,risk of immunogenicity,
targeted delivery, and the potential for controlled dosage (43). Current research highlights the
efficacy of exosome-based therapy across all stages of wound healing, actively accelerating the

regenerative process (42).

Since they comprise proteins, nucleic acids, lipids,»and growth factors, exosomes modulate pivotal
cellular processes in wound healing, including inflammation, angiogenesis, cell proliferation, and
extracellular matrix remodeling (44). Existing research suggests that exosomes influence the
secretion of dermal fibroblasts;senhancing the synthesis and release of collagen and elastin, which
in turn facilitates re-epithelialization» (45-47). Furthermore, exosomes regulate inflammation and
promote macrophage, polarization toward the M2 phenotype. They also stimulate angiogenesis,
direct cell migration and, proliferation, collagen synthesis, and tissue remodeling to minimize
scarring (43,48). Numerous studies have demonstrated the therapeutic potential of exosomes
across various stages of wound healing. During the inflammatory phase, exosomes modulate the
inflammatory> microenvironment by inhibiting immune response, thereby reducing inflammation
while simultaneously promoting the survival and regeneration of damaged cells (6). Possible
biological pathways underlying exosome effects include immune modulation, reduction of oxidative
stress, and prevention of apoptosis and necrosis in damaged cells, supporting their survival and
repair. In the proliferation phase, exosomes accelerate wound closure by activating endothelial
cells and fibroblasts, thus initiating angiogenesis and extracellular matrix (ECM) deposition (6,50).

Angiogenesis is vital to the wound-healing process, as it facilitates nutrient transport, maintains
11



oxygen homeostasis, and supports tissue regeneration. This complex process involves vascular
endothelial cells and various angiogenesis-related factors (51,52). Exosomes are recognized as
potent enhancers of endothelial cell proliferation and migration, as well as angiogenesis, via
multiple signaling pathways, significantly improving local vascular regeneration of damaged areas
(53). Finally, during the remodeling phase, exosomes balance the ratio between matrix

metalloproteinases and their inhibitors, leading to optimized wound resolution (6,52).

The comparative characteristics of key natural and artificial exosomes investigated for use in

wound healing purposes are summarized in Table 2.

Table 2. Selected overview of research on the role of exosomes in tissue regeneration.and wound
healing, categorized by exosomal origin

ANIMAL-DERIVED EXOSOMES

Contribute to wound healing by modulating inflammation and

oxidative stress, stimulating cell proliferation and migration,
Characteristics promoting angiogenesis, and orchestrating »extracellular matrix [53-55]

remodeling. Furthermore, they serve as intrinsic delivery systems for

the targeted transport of bioactive molecules.

Accelerated wound, healing and promotion of

the regeneration of  skin structures
(facilitating the formation of collagen in a [56]
"basket-weave" orientation) by inhibiting the
fibroblast transition into myofibroblast.

Deer Antler Stem
Cell Exosomes

Accelerated wound healing achieved through

Rat Mesenchymal . . .
¥ combined effects on cell proliferation,

Stromal Cell L ) : [571
Examples and ExosBMEs migration, angiogenesis, and extracellular
key findings matrix remodeling.
Accelerated wound healing mediated by
Rat Hair Follicle Stem bioactive molecules involved in cell migration [58]
Cell Exosomes and proliferation, as well as extracellular
matrix remodeling
Rat and Mouse
. . Enhanced angiogenesis, epithelialization, and
Adipose-Derived 9109 P [59, 60]

collagen deposition
Stem Cell Exosomes 9 P

PLANT-DERIVED EXOSOMES

Due to their unique structural properties, they can be efficiently
internalized by cells, enabling their specific biochemical cargo to be
delivered to target cells. They are inherently biocompatible and non-
toxic, posing a minimal risk of immunogenic reactions, and offer a
Characteristics cost-effective and sustainable production platform compared to [61-64]
animal-derived or artificial alternatives The molecular components of
plant exosomes, including proteins, lipids, and nucleic acids, can
stimulate cell proliferation, migration, and differentiation, supporting
the formation and repair of new tissue, ultimately accelerating the
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healing of chronic wounds.

Common wheat - [65]
Triticum aestivum
Grapefruit —
. . 66
Citrus x paradise [66]
Goldenberry — Promoted wound healing by enhancing
Examples and : : [67]
x _p . Physalis peruviana angiogenesis, epithelialization, and collagen
key findings -
Aloe Vera — Aloe vera deposition. [68]
Tomato — [69]
Solanum lycopersicum
Indian mulberry - [70]

Morinda officinalis

ARTIFICIAL EXOSOMES

Artificial exosomes enable the controlled and targeted delivery of
bioactive molecules while promoting dermal fibroblast proliferation
and migration, angiogenesis, and collagen organization, ~while

Characteristics 71, 72
reducing immunogenicity. A key advantage is their compatibility with [ ]
various biomaterials, making them an effective andfsafe approach to
advanced tissue regeneration and wound healing.

Human Umbilical . . . .
Promotion of wound healing by stimulating
Mesenchymal Stem . . . .
the proliferation and migration of dermal [73]
Cell Exosome :
. . fibroblasts.
Mimetics
Examples and MiR146a-loaded Enhanced healing outcomes achieved
key findings Engineered Exosomes through miRNA loading, which actively [74]
Released from Silk modulates inflammatory pathways and
Fibroin Patch promotes tissue regeneration.
Neutrophil-Derived Improved wound repair utilizing exosome [75]
Exosome Mimetics mimetic-hydrogel hybrids

Despite functional variations arising from their diverse cellular origins, exosomes exert similar
therapeutic effects on wound repair. Plant-derived exosomes are characterized by their inherent
biocompatibility, non-toxicity, and minimal immunogenic risk. Animal-derived exosomes, such as
those sourced from mesenchymal stem cells, demonstrate significant efficacy in accelerating
wound healing by acting as cellular messengers that promote tissue repair and regeneration.
Concurrently,, engineered and artificial exosomes facilitate the targeted delivery of bioactive
molecules, offering enhanced stability, precise cargo control, and the ability to integrate with
biomaterials, thereby amplifying their therapeutic impact (42). Nevertheless, the clinical
translation of exosomes, regardless of their origin, remains in its infancy. Critical challenges must
be addressed before widespread implementation, including low yields, costly and time-consuming
manufacturing processes, and rigorous quality control requirements that necessitate extensive

clinical validation (36).
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CONCLUSION

Exosomes exhibit remarkable heterogeneity in their origin and physicochemical properties,
positioning them as great candidates for a wide range of applications in regenerative medicine.
Both natural and artificial exosomes exhibit promising effects in wound healing by modulating
various physiological processes, including the regulation of inflammation, induction of
angiogenesis, stimulation of cellular proliferation and migration, synthesis of the extracellular.
matrix, and the reduction of scar formation. Despite the existence of substantial experimental and
preclinical evidence of the efficacy of exosomes, further research is essential to precisely quantify
their therapeutic potential, optimize production and isolation strategies, standardize protocols, and
test their safety and efficacy in clinical settings. In the future, the development.of scalable, stable,
and functionally optimized exosome-based therapies could provide/a perspective strategy for

enhancing tissue regeneration and the overall quality of wound healing.
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