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Аbstract 

The use of AI into drug development, clinical trials, and clinical practice represents a 

transformative advancement in healthcare. AI technologies offer unprecedented capabilities to 

analyze vast datasets, identify patterns, and generate actionable insights, thereby 

revolutionizing various aspects of the healthcare ecosystem. This review aims to offer a 

thorough overview of current research on AI applications in healthcare. In drug development, 

AI-driven approaches rationalize the process of identifying potential therapeutic compounds, 

accelerating the route from discovery to market approval. Within clinical trials, AI-powered 

analytics optimize trial design, reduce sample size, patient recruitment, and data analysis, 

increasing statistical power and efficiency. Moreover, in clinical practice AI applications empower 

healthcare providers with decision support systems, personalized treatment recommendations, 

and predictive analytics, leading to more effective and personalized patient care. While 

challenges such as ethical considerations and regulatory frameworks remain, the potential 

benefits of AI in driving medical innovation and improving patient outcomes are substantial, 

underlining the importance of continued research, collaboration, and responsible application of 

AI in healthcare. 
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Apstrakt 
 
Primena veštačke inteligencije (AI) u razvoju lekova, kliničkim istraživanjima i zdravstvenoj 

zaštiti predstavlja promenljivi napredak zdravstvene nege uopšte. Tehnologije bazirane na AI 

nude neprocenjive mogućnosti za analizu ogromnih skupova podataka, identifikaciji primenljivih 
obrazaca revolucionarno modifikujući različite aspekte ekosistema zdravstvene zaštite. Ovaj 
revijalni rad ima za cilj da ponudi pregled aktuelnih istraživanja  o primeni veštačke inteligencije 
u zdravstvu. U razvoju lekova pristupi bazirani na AI racionalizuju proces identifikacije 
potencijalnih terapijski aktivnih supstanci, ubrzavajući put od otkrića do odobrenja za promet. U 
kliničkim istraživanjima, analitika ojačana primenom AI optimizuje dizajn studija, smanjuje 

veličinu uzorka, regrutovanje pacijenata i vreme za analizu podataka, povećavajući statističku 
relevantnost i snagu rezultata. Dodatno, u kliničkoj praksi AI aplikacije osnažuju pružaoce 
zdravstenih usluga sistemima za podršku u donošenju odluka, personalizovanim preporukama 
za lečenje i prediktivnom analitikom,što vodi znatno efikasnojoj i personalizovanijoj nezi 
pacijenata. Iako ostaju izazovi kao što su etička razmatranja i regulatorni zakonski okviri, 
značajna je potencijalna dobrobit od AI u medicinskim inovacijama i poboljšanju ishoda 
pacijenata sa naglaskom na važnost kontinuiranih istraživanja, saradnje i odgovorne primene 

veštačke inteligencije u zdravstvu.  
 
Ključne reči: veštačka inteligencija, razvoj lekova, klinička istraživanja, mašinsko učenje, 
dubinsko učenje 
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Artificial intelligence  

Introduction 

Artificial intelligence (AI) refers to the imitation of human intelligence within computer 

systems. This field focuses on creating machines that can perform tasks on par with or even 

exceeding human capabilities (1). The methodology involves gathering data, establishing rules 

for its application, making either tentative or final decisions, and continuously refining the 

process through self-correction. The fields of AI and its subset, machine learning (ML), have 

produced considerable interest across diverse industries, with pharmaceutical sciences being no 

exception. The exponential growth in data from myriad sources, coupled with advancements in 

analytical tools and the continuous refinement of ML algorithms, has led to a rapid proliferation 

of ML applications within pharmaceutical sciences. From revolutionizing drug discovery and 

development processes to enabling the realization of personalized medicine, ML applications in 

this domain highlight the transformative potential of AI. Throughout history, the quest of AI has 

been characterized by four primary approaches, each supported by distinct groups using 

specific methodologies (2). These approaches refer to: a) Act humanly, b) Think humanly, c) 

Act rationally, and d) Think rationally.  

In this context, the intersection of AI and healthcare has sparked a paradigm shift in how we 

approach drug development, clinical trials, and healthcare. In recent years, AI technologies 

have emerged as powerful tools capable of analyzing vast quantities of data, identifying 

intricate patterns, and generating actionable insights with unprecedented speed and accuracy 

(3). Within the fields of drug discovery and development, AI algorithms are revolutionizing the 

identification of potential therapeutic compounds, expediting the research process from bench 

to bedside. In parallel, AI-driven analytics are reshaping the landscape of clinical trials, 

optimizing trial design, patient recruitment, and data analysis to enhance efficiency and 

efficacy. Moreover, within healthcare, AI applications are empowering healthcare providers with 

decision support systems, personalized treatment recommendations, and predictive analytics, 

thereby revolutionizing patient care delivery. As we delve deeper into the field of AI in 

healthcare, it becomes increasingly evident that these technologies hold immense promise in 

accelerating medical innovation, improving patient outcomes, and ultimately transforming the 

way we approach healthcare delivery. 
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Historical background 

The ancient Greeks held reasoning faculties in high regard, viewing them as the hallmark of 

human uniqueness that set humans apart from other creatures (1). They honored the ability to 

think logically and critically as a defining characteristic of humanity, shaping the foundation of 

Western philosophy and science. The ancient Greek philosopher Plato (5th BC century), as well 

as religious thinkers many centuries later, expanded upon this notion by introducing the concept 

of the soul (1). Beyond mere reasoning, humans were believed to possess a soul—a divine 

essence imparted by their creator—which granted them a unique position in the cosmic order. 

This synthesis of reason and soul provided a holistic framework for understanding human 

nature, blending philosophical inquiry with theological reflection. His student, Aristotle, codified 

laws governing logical thought (1). His development of syllogistic reasoning laid a solid 

foundation for subsequent philosophical and scientific quests, shaping scholarly discourse on the 

human mind for centuries. In the 16th century, the polymath Leonardo da Vinci, conceptualized 

a mechanical calculator; a testament to his approach to engineering and mathematics (1). 

Although da Vinci never constructed the device himself, modern reconstructions based on his 

designs have validated its feasibility, showcasing his remarkable foresight and contributions to 

the early development of mechanical computing.  

In the 20th century, Alan Turing introduced the concept of "effective calculability" as a 

solution to this fundamental challenge (4). Turing's work laid the basis for computational 

models, establishing the concept of algorithms, as step-by-step procedures for calculations. The 

genesis of artificial neural networks (ANNs) can be traced back to 1943, with the development 

of an initial neural network composed of electrical circuits (5). This research aimed to replicate 

the intricate interactions between neurons in the human brain, laying the foundation for the 

burgeoning field of neural networks and their applications in AI. The formal establishment of AI 

as a distinct field occurred in 1956 during a historic conference held at Dartmouth College (6). 

This landmark event brought together prominent researchers to explore the potential of 

creating machines capable of simulating various aspects of human intelligence. The Dartmouth 

conference marked the official birth of AI, heralding decades of intensive research and 

development in the field. 

The computer stands as one of the most monumental technological advancements since the 

advent of the printing press in the 15th century (1,7). During World War II, early iterations of 

computers were utilized by the military forces of Germany and the western allies, although 
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these machines exerted little resemblance to modern computers. For example, America's 

ENIAC, weighing 30 tons and spanning an entire basement, relied on 17,000 vacuum tubes. In 

the 1950s, IBM embarked on the development of business computers, which were notably 

smaller than their military counterparts, occupying only a fraction of a room space. Over the 

subsequent two decades, computers evolved into forms more akin to those familiar today, albeit 

still considerably large. By the late 1980s, the personal computer had become a ubiquitous 

presence, with approximately 20% of US households owning at least one (1). This widespread 

integration signified a pivotal moment, as artificial intelligence began to permeate homes and 

workplaces nationwide, underscoring the swift assimilation of advanced computing technologies 

into everyday life. 

 

AI classification 

AI can be classified into several main types based on the learning approach used (Table 1): 

Supervised learning: The AI system is trained on labeled data, where the inputs and desired 

outputs are provided (8). The system then learns to map the inputs to the outputs, allowing it 

to make predictions on new, unseen data. Examples include image classification, spam 

detection, and predictive analytics. 

Unsupervised learning: The AI system is given unlabeled data and must find patterns and 

structure within it on its own (8-11). The goal is to discover hidden insights and groupings in 

the data. Examples include customer segmentation, anomaly detection, and recommendation 

systems. 

Reinforcement learning: The AI system learns by interacting with an environment and 

receiving feedback (rewards or penalties) based on its actions (12). It then adjusts its behavior 

to maximize the rewards, allowing it to learn complex tasks through trial and error. Examples 

include game-playing AIs, robotics, and autonomous vehicles. 

Table 1. Popular machine learning algorithms. 

 

Linear Regression K-Means Clustering Reinforcement learning 

Logistic Regression Hierarchical Clustering Q-Learning 

Decision Trees 
Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) 
Deep Q-Networks (DQN) 

Random Forests Gaussian Mixture Models (GMM) 
State-Action-Reward-

State-Action (SARSA) 

Support Vector 
Machines (SVM) 

Principal Component Analysis (PCA) Policy Gradient Methods 

K-Nearest Neighbors 

(KNN) 
Independent Component Analysis (ICA) Actor-Critic Methods 

AMM Pap
er 

Acc
ep

ted



 6 

Naive Bayes 
t-Distributed Stochastic Neighbor 
Embedding (t-SNE) 

Deep Deterministic Policy 
Gradient (DDPG) 

Neural Networks Self-Organizing Maps (SOM) 
Proximal Policy 

Optimization (PPO) 

Gradient Boosting 
Machines (GBM) 

A priori Algorithm 
Advantage Actor-Critic 
(A3C/A2C) 

Adaptive Boosting 

(AdaBoost) 
Association Rules Monte Carlo Methods 

 
Deep learning (DP)  is a powerful subdivision of machine learning (Figure 1) that utilizes 

ANNs with multiple hidden layers to learn complex patterns in data (13,14). Unlike more 

traditional ML algorithms that rely on manual feature engineering, DP models can automatically 

extract relevant features from raw data, enabling them to tackle increasingly complex 

problems. Deep learning has been particularly successful in areas like computer vision, natural 

language processing, and speech recognition, where it has outperformed previous state-of-the-

art methods (2). By using the hierarchical structure of neural networks, DP models are able to 

learn high-level abstractions from low-level inputs, allowing them to make highly accurate 

predictions and classifications. While DP models require large amounts of training data and 

significant computational resources, they have become an invaluable tool in the field of AI, 

powering many of the most advanced intelligent systems and applications we see today. As the 

field continues to evolve, DP is likely to play an even more central role in the development of 

increasingly capable and versatile AI systems. 

 

 

Figure 1. Association among the terms deep learning, machine learning, and artificial 

intelligence. 

 

AI in Drug Development 

Over the past two centuries, the field of medicine has undergone a remarkable evolution, 

progressing from reliance on simple herbal remedies to the development of intricate 
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pharmaceutical formulations and dosage forms (15). However, the process of bringing a new 

drug to market remains a lengthy and complex journey, often spanning several years and 

involving substantial financial investments, largely due to the high attrition rate inherent in drug 

development. Consequently, there is a pressing need to streamline this process by using state-

of-the-art technologies, including AI.  

Machine learning, plays a significant role in pharmaceutical sciences, particularly in drug 

research and development, where techniques like high-throughput screening and combinatorial 

chemistry are extensively utilized (16-18). As the volume of such research continues to 

escalate, the importance of ANNs in facilitating drug discovery processes has grown 

exponentially (19,20). Moreover, the advent of extensive datasets pertaining to potential 

medicinal compounds has heralded the era of big data in medicine (21). This paradigm shift 

necessitates the adoption of AI technologies capable of effectively modeling dynamic, 

heterogeneous, and vast repositories of drug-related data. 

Deep learning models in computational chemistry have transformed drug development, 

notably in terms of predicting drug-target interactions, creating novel compounds, and 

anticipating ADMET properties for translational research (22). Machine learning techniques, 

instrumental in target development and drug discovery, have been integrated into various 

stages of the research and development pipeline, using advancements in ML theory and 

pharmacological data accumulation (23,24). Machine learning accelerates virtual screening, 

reducing costs and enhancing accuracy by using web-based tools like (25,26).  

Utilizing an established treatment for a novel condition presents a favorable scenario wherein 

the new medication can bypass Phase I clinical trials and proceed directly to Phase II trials (27). 

This approach offers the potential for expedited development timelines and reduced overall 

costs, rendering drug repurposing an increasingly attractive strategy. In the era of big data, the 

convergence of AI and network medicine leads to innovative applications of data science in 

disease characterization, medication evaluation, treatment selection, and target identification 

with unprecedented precision (28). Emerging systems biology methodologies use ML algorithms 

to analyze medication effects, separating from traditional reliance on chemical similarity and 

molecular docking. Notably, such studies have been exemplified in remdesivir trials for COVID-

19 treatment (28). Similarly, in the fight against Hepatitis C virus (HCV), network-based 

medication repurposing efforts have led to the discovery of 16 potentially repurposable 

medicines (29). These innovative approaches underline the transformative potential of AI-driven 
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strategies in drug repurposing, offering novel avenues for accelerating therapeutic discoveries 

and optimizing treatment outcomes. 

During the pre-formulation stage of drug development, assessing the physicochemical 

properties of a medicinal substance is pivotal (30). These properties govern critical aspects such 

as solubility, stability, excipient interactions, and ultimately, bioavailability. Determining the 

water solubility of a new drug compound is particularly crucial as it directly impacts absorption 

across various administration routes (31). Techniques like surfactants, complexation, and 

cocrystal formation are used to enhance aqueous solubility (31). Predicting drug solubility in 

silico using AI is of paramount importance (31,32). Additionally, substantial progress has been 

made in utilizing ML particularly transfer learning, in pharmaceutical settings (33). Integrated 

techniques combining transfer learning and multitask learning have shown promise in predicting 

various pharmacokinetic parameters with strong generalization ability (33). ANNs have been 

extensively used to predict formulation and process-related characteristics such as drug 

dissolution and release, showcasing remarkable success and potential for rapid and efficient 

manufacturing optimization (34). In the same vein, early consideration of interactions among 

materials and conditions during drug manufacturing, is vital to prevent subsequent losses in 

time and resources (35). AI is increasingly applied in pharmaceutical technology to streamline 

operations and gain insights into formulation-process interactions. Quality-by-Design is a 

systematic approach integrating quality into product development through a well-defined 

framework (36). ANNs play a crucial role in drug development, linking material related 

parameters to in vivo performance (36). 

 

AI in Clinical Trials 

The use of AI in clinical trials represents a transformative advancement in healthcare 

research, since it can give unprecedented capabilities to rationalize various aspects of clinical 

trial management and analysis (37). From patient recruitment and selection to data monitoring 

and analysis, AI enhances efficiency and accuracy throughout the trial lifecycle. AI-driven 

predictive models aid in identifying suitable patient populations, optimizing trial protocols, and 

predicting patient outcomes, thereby expediting trial timelines and reducing costs. Furthermore, 

AI facilitates real-time data monitoring, enabling early detection of adverse events and protocol 

deviations.  
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Quite recently, generative AI algorithms were proposed as an innovative way to reduce the 

actual human sample size by using AI-synthesized virtual patients instead (38,39). Thus, AI-

driven algorithms have been proposed for data augmentation in clinical trials. Data 

augmentation techniques have primarily focused on image analysis, particularly in computer 

vision, with methods like random rotation, noise addition, and generative adversarial networks 

being explored (40-43). While some studies have applied data augmentation to generate 

synthetic fetal ultrasound images, the present study primarily deals with numerical data 

augmentation (44). Variational autoencoders (VAEs) have been recognized as effective in 

developing generative models to produce novel synthetic data, offering advantages over 

conventional autoencoders by generating data from the same distribution as input data (45). 

Besides, sample size estimation is pivotal in clinical trials, ensuring safety and efficacy (46). 

Obtaining a representative sample is essential for understanding a population, yet collecting 

extensive data can be challenging and resource-intensive. Each trial requires meticulous 

planning, including outlining objectives, endpoints, data collection, and statistical methods (46). 

A recent study aimed to reduce required sample sizes in clinical trials using a VAE (47). That 

study explored the application of VAEs to virtually increase sample sizes in clinical trials, 

demonstrating the feasibility of using only 20% of the original dataset without altering study 

outcomes (45). Even for data with high variability, VAEs substantially reduce sample size 

requirements, accelerating trials, cutting costs, and minimizing human exposure (45). Moving 

one step ahead, a subsequent study proposed the utilization of ANN specifically VAEs, to reduce 

the need for recruiting large participant populations in bioequivalence investigations (39). In 

that study, it was investigated the suitability of utilizing VAEs to virtually expand the sample 

size in the context of a typical 2x2 crossover design bioequivalence study. The aim was to 

generate realistic synthetic data that can supplement the original trial data, potentially reducing 

the burden of recruiting a large number of participants (39). Both these two studies represent 

an important step forward in the integration of advanced AI techniques into the clinical trial 

process. By demonstrating the feasibility and potential benefits of using VAEs to augment 

bioequivalence data, they pave the way for further exploration and adoption of generative AI 

algorithms in various aspects of clinical research. 

Machine learning approaches have also been used in the field of pharmacokinetics, aiming to 

address the old problem of finding an appropriate metric for absorption rate (48). In recent 

studies, several ML approaches were used to solve the ongoing difficulty of establishing an 
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adequate absorption rate measure (50-52). Using Cmax as an absorption parameter has 

presented many problems (53-55). Alternative metrics, such as Tmax and the Cmax/AUC ratio, 

have been proposed to better characterize absorption rate features, particularly in immediate-

release formulations (55). Studies comparing these measurements discovered that the 

Cmax/AUC ratio provided higher statistical precision and ease of use than Tmax (55,56). 

However, the choice of a parameter to describe absorption rate should be based on theoretical 

considerations, particularly the units (51). A good absorption rate measure should represent 

variations in concentration over time and indicate a concentration per time unit. Unfortunately, 

several proposed metrics lack proper units, such as AUC, Cmax, Tmax, and even the Cmax/AUC 

ratio, which is measured in time-1.  

In this context, a unique measure known as "average slope" (AS) was introduced by 

applying several computational interdisciplinary techniques (51,52). It was shown that the usual 

metric, Cmax (peak plasma concentration), is insufficient to reflect the absorption rate. In 

contrast, the newly suggested metric, average slope, has the requisite absorption rate features, 

suitable units of measurement (concentration units per time), and is simply computed directly 

from drug concentration-time data. All ML algorithms revealed that the average slope measure 

outperformed other metrics used or suggested in bioequivalence studies (50-52). Simplicity and 

applicability are crucial for pharmacokinetic measures. Metrics like AS can be easily estimated 

using simple, reproducible methods without complex modeling, making them more reproducible 

and straightforward compared to model-based approaches (50-52). The estimation of AS can 

even be done manually using tools like Excel®, enhancing its accessibility. These findings 

highlight the necessity of reevaluating established measurements and investigating novel 

solutions, with ML providing a fresh viewpoint on long-standing pharmacokinetic issues. 

 

AI in Healthcare 

AI has become increasingly important in clinical practice because of its ability to efficiently 

handle massive datasets, resulting in better patient care and a lower burden on healthcare staff 

(6). This growth prepared the path for personalized medicine, which goes beyond typical 

computational procedures. Predictive models, in particular, have enormous potential for 

diagnosing diseases, forecasting treatment outcomes, and influencing the future of preventative 

healthcare. AI can improve diagnostic accuracy, streamline healthcare operations, facilitate 

more effective disease and therapy monitoring, and modify medical procedures. 
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In cardiology, the integration of advanced AI algorithms, collectively known as AI, 

revolutionizes the analysis of cardiac data. AI systems aim to interpret data more efficiently, 

offering insights for diagnosing, treating, and managing cardiovascular conditions. In 

cardiovascular imaging, AI serves two main purposes (57). Firstly, it automates tasks like image 

segmentation and parameter assessment, reducing the need for human involvement. Secondly, 

it identifies clinically significant insights. While most applications focus on task automation, 

there are also advancements in algorithms for acquiring cardiac measurements. Also, the AI use 

in anesthesia has made tremendous progress (58,59). Various activities are efficiently done 

using a variety of strategies throughout all phases of operation (60,61). For example, while a 

neural network built to detect esophageal intubation is efficient, continuous capnography makes 

it unnecessary, disclosing previously unknown difficulties (62,63). 

In addition, the use of AI algorithms for image analysis, has enormous potential in 

pulmonary medicine (64,65). Lung cancer, a common and fatal illness, frequently appears as 

lung nodules on early imaging, making manual interpretation difficult (66). AI recognition 

technology can speed up picture processing, allowing for multi-parameter cluster analysis and 

supporting the diagnosis (67). New results show that AI systems are effective at recognizing 

malignant pulmonary nodules from chest CT scans, employing deep learning technology for 

analysis, and assisting medical personnel in screening for lung cancer with greater accuracy 

(68). Another study found that a predictive approach including logistic regression analysis and 

particular tumor markers outperformed basic combination detection. 

AI plays an important role in urology, notably in genitourinary cancers. For example, in a 

study on prostate cancer, AI was used to predict biopsy results (69). AI has the capacity to 

stage and predict disease recurrence in kidney and testicular cancer cases. Recent applications 

include non-oncological illnesses such as stones and functional urology. Over the last few 

decades, various research has looked into the use of AI in prostate cancer management, in line 

with the precision medicine paradigm (69). Prostate cancer diagnostics, which encompasses a 

variety of applications, has made substantial advances (70). In 1994, a critical study 

investigated the ability of ANNs to predict biopsy outcomes and treatment outcomes following 

radical prostatectomy (70). Another study assessed the predicted accuracy of two AI systems 

developed using data from a European referral database, with the goal of detecting prostate 

cancer early (71).  
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Skin disorders are often characterized by the visual characteristics of the lesions they cause. 

However, dermatology faces a hurdle because there are over 2,000 different dermatological 

disorders, some of which present identical symptoms, complicating correct diagnosis and 

therapy (72). This difficulty is aggravated by a dermatological scarcity, particularly in 

underdeveloped nations and isolated places with few medical resources (73). The convergence 

of big data, advancements in image recognition, and widespread smartphone usage has the 

potential to transform skin disease diagnosis and treatment (74). AI, in particular, holds 

promise for providing rapid diagnoses, expanding treatment options, and improving 

accessibility, especially in underserved areas and resource-constrained settings (75). The 

integration of AI technology and algorithms is set to become a standard approach in 

dermatological diagnosis and assessment, offering increased reliability in analyzing the 

structure and appearance of skin abnormalities, with significant progress made in facial 

recognition and aesthetic analysis (76). 

Neuroimaging is crucial in healthcare and research, enabling the study of the brain in 

different conditions (77-79). Advanced analysis methods help extract meaningful insights from 

imaging data, aiding in understanding brain function and pathology. It has notably contributed 

to the rapid association of conditions in brain imaging, advancing our understanding of brain 

function. AI has also potential in neuro-oncology. AI algorithms are likely to advance our 

understanding of brain cancers and therapy. Neuro-oncology has made significant progress by 

integrating molecular indicators into therapy. AI systems excel at identifying these indicators 

from imaging data with great accuracy, especially in small patient groups. They successfully 

assessed the mutational status of numerous markers using distinct institutional databases (77-

79).  

Imaging techniques are critical for treating pediatric neurological, neurosurgical, and neuro-

oncological diseases (80). Multiparametric MRI, when paired with radiogenomic analysis, links 

imaging features with molecular biomarkers, which aids in illness diagnosis. However, 

implementing this method into everyday healthcare remains difficult. AI approaches can model 

large datasets linked to childhood neurological illnesses, allowing for early inclusion into 

prognostic modeling systems and providing a solution to this difficulty (80). ANNs have 

demonstrated substantial effectiveness in pediatric neuroradiology, particularly in categorizing 

children based on ventricular size to distinguish between normal and hydrocephalic conditions. 

A recent study examined hydrocephalus and controls, reaching a very high accuracy level for 
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hydrocephalus and for controls using T2-weighted MRI scans from 399 children (81). Previous 

research has indicated similar effectiveness in pediatric hydrocephalus diagnosis using 

evolutionary adjustments to ANN techniques (82). Ultrasound has become widely adopted in 

clinical settings due to technological advancements and digital health infrastructure (84,84). 

Breast cancer, a leading cause of cancer-related mortality, has seen significant DL utilization for 

diagnosing and categorizing breast masses. DL techniques applied to abdominopelvic imaging, 

particularly liver examination, have shown superior accuracy in evaluating liver fibrosis 

compared to traditional methods. In muscle illness detection and imaging segmentation, ANN-

based approaches have increased diagnosis accuracy, particularly for inflammatory muscle 

diseases (85,86). Digitalized image datasets, open-source algorithms, computer power 

increases, cloud services, and ongoing DL technique research all contribute to the rapid 

evolution of AI/ML tools for imaging interpretation. 

Clinical decision-support systems (CDSSs) are designed to enhance the quality of clinical 

decision-making and, consequently, the treatment provided by healthcare organizations (87). 

The underlying principle is that the integration of AI-powered support systems can help address 

the challenges faced by clinicians in their decision-making processes (Figure 2) (88). 

  

 

Figure 2. The benefits and stakeholders of a clinical decision support system (CDSS).  

 

 

These AI-driven strategies for CDSSs can be broadly categorized into two main approaches 

(89): 

1. Knowledge-based approaches: These systems rely on a comprehensive knowledge base, 

typically curated by domain experts, which contains clinical guidelines, rules, and best practices 

(89). The AI algorithms then apply this knowledge to analyze patient data and provide 

recommendations or alerts to clinicians. 
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2. Data-driven approaches: These systems use ML and other data-centric techniques to 

identify patterns and insights from large datasets of clinical information, such as electronic 

health records, diagnostic test results, and patient outcomes (89). The AI models can then use 

these data-driven insights to generate personalized recommendations and support clinical 

decision-making. 

By incorporating these AI-powered CDSS strategies, healthcare organizations can enhance 

the consistency, accuracy, and timeliness of clinical decision-making, ultimately leading to 

improved patient outcomes and more effective treatment plans. As the field of AI in healthcare 

continues to evolve, the integration of these advanced decision-support systems is poised to 

become an essential component of modern healthcare. 

 

   

Concerns and future perspectives 

The incorporation of AI technologies into clinical settings represents a significant 

advancement in improving diagnostic precision and treatment effectiveness (90-92). By 

exploiting the power of ML and data-driven approaches, AI-powered systems can enhance 

various aspects of healthcare delivery, from early disease detection to personalized therapy 

recommendations. AI-based tools have the potential to assist clinicians in making more 

accurate and timely diagnoses by analyzing medical images and identifying subtle patterns that 

may be overlooked by human observers. This enhanced diagnostic capability can lead to earlier 

intervention, improved patient outcomes, and more efficient utilization of healthcare resources. 

Furthermore, AI algorithms can be trained to predict disease progression, identify high-risk 

individuals, and recommend personalized treatment plans tailored to a patient's unique medical 

history and genetic profile. This personalized approach to healthcare can help healthcare 

providers deliver more effective and targeted therapies, minimizing the risk of adverse reactions 

and improving overall patient well-being. The integration of AI into healthcare also has the 

potential to streamline administrative tasks, automate routine workflows, and free up clinicians' 

time, allowing them to focus more on direct patient care. By automating tasks such as 

appointment scheduling, medication management, and data entry, AI can enhance the 

efficiency and productivity of healthcare organizations. 

As the adoption of AI in clinical settings continues to grow, it is crucial to address the ethical 

and regulatory considerations surrounding the use of these technologies. Ensuring data privacy, 
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algorithmic transparency, and human oversight will be essential to maintaining patient trust and 

upholding the highest standards of healthcare. Overall, the integration of AI into healthcare 

represents a significant step forward in improving diagnostic accuracy, treatment outcomes, and 

the overall quality of healthcare delivery. As the field continues to evolve, the synergistic 

collaboration between clinicians and AI-powered systems will pave the way for a more 

personalized, efficient, and effective healthcare landscape. 

As the integration of AI into healthcare becomes more widespread, it is crucial that 

healthcare professionals receive comprehensive training and education on the capabilities, 

limitations, and ethical considerations of these emerging technologies (93). Effective training 

programs should prepare clinicians, nurses, and other healthcare staff with a fundamental 

understanding of AI principles, including ML algorithms, data preprocessing, and model 

interpretability. Healthcare professionals should be trained to critically evaluate the inputs, 

outputs, and decision-making processes of AI-powered systems, ensuring that they can make 

informed judgments about the reliability and appropriateness of the recommendations provided. 

Additionally, training should address the ethical implications of AI in healthcare, such as data 

privacy, algorithmic bias, and the maintenance of human oversight and accountability. By 

investing in the training and upskilling of healthcare professionals, organizations can foster a 

culture of AI-readiness and empower their staff to effectively use these advanced tools to 

enhance diagnostic accuracy, treatment planning, and patient outcomes. Ongoing education and 

collaborative learning opportunities will be essential as the field of AI in healthcare continues to 

evolve rapidly. Ultimately, the successful integration of AI will depend on the ability of 

healthcare professionals to understand, trust, and responsibly utilize these transformative 

technologies. 

While AI systems become more integrated into clinical decision-making processes, it is 

crucial that these technologies adhere to principles of transparency, traceability, and 

explainability (94). Healthcare professionals and patients must be able to understand how AI-

powered algorithms arrive at their recommendations and predictions, in order to build trust and 

ensure responsible deployment. Transparency refers to the need for AI systems to be open and 

accountable, with clear documentation on the data sources, model architectures, and training 

procedures used. Traceability involves maintaining detailed logs of the AI system decision-

making process, allowing for retrospective auditing and debugging. Explainability, on the other 

hand, focuses on the ability to interpret the reasoning behind an AI system outputs, enabling 
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healthcare providers to validate the logic and make informed decisions. By prioritizing these key 

attributes, AI developers and healthcare organizations can foster greater trust and acceptance 

of these transformative technologies. Clinicians must be able to understand the strengths, 

limitations, and potential biases of AI systems, and patients should have confidence that their 

personal health data is being handled ethically and responsibly. Upholding principles of 

transparency, traceability, and explainability will be essential as AI continues to shape the future 

of healthcare delivery. 

Regulatory bodies overseeing medical device certification and approval have been slow to 

address the issue of explainable AI and its implications for product development and marketing. 

While the FDA takes a comprehensive approach to advancing AI-based medical products, 

explicit mention of explainability is lacking (95,96). Instead, there is an emphasis on ensuring 

transparency and clarity in the output and algorithms provided to users, with a focus on 

understanding the software's functionalities and its evolutionary changes. Similarly, the Medical 

Device Regulation (MDR) does not directly address the need for explainability in AI and ML-

based medical devices (97). However, accountability and transparency remain crucial, 

particularly concerning the information provided about the development process of machine 

learning and deep learning models used in medical treatment. It is likely that future regulations 

will require manufacturers to provide detailed insights into model training and evaluation, data 

usage, and overall methodologies using in their creation.  

The legal landscape for AI in healthcare is constantly changing, with new rules and 

regulations expected to address liability concerns. Healthcare practitioners must be aware of 

these shifts as legislative frameworks evolve to promote ethical, transparent, and responsible 

practices in the development and deployment of AI technologies. There are disparities between 

Europe and the United States in terms of international guidelines on legal difficulties resulting 

from the use of AI in healthcare, with each region taking its own approach. The European Union 

has adopted a proactive approach, recognizing the particular issues AI brings to liability regimes 

and enacting the Artificial Intelligence Act to ensure coherence and legal clarity for AI use, 

notably in healthcare (98).  

The EU intends to promote safe AI use while also encouraging technological innovation. In 

comparison, the USA lacks a complete legal structure. However, the FDA acknowledges the 

regulatory implications of AI in healthcare and is aiming to maintain continued oversight of AI 

as a medical device through strategic planning (99). The FDA's measures include increasing 
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transparency by mandating makers to provide extensive descriptions of the operational 

mechanisms of AI devices in order to promote a comprehensive understanding of device 

advantages and hazards. In addition, attempts are underway to eliminate potential bias in AI 

systems by taking into account aspects such as training data sources and demographics. The 

FDA has issued a discussion paper proposing a regulatory framework for changes to AI-based 

medical software to assure the safety of AI technology in healthcare (99). 

 

Conclusion 

In conclusion, the utilization of AI across the spectrum of drug development, clinical trials, 

and healthcare heralds a new era in healthcare innovation (100). The capacity of AI to analyze 

through huge volumes of data, identify patterns, and generate insights at unprecedented 

speeds has reshaped how we approach medical research and patient care. In drug 

development, AI algorithms streamline the process of identifying promising drug candidates, 

accelerating the journey from discovery to market availability. Likewise, in clinical trials, AI-

powered analytics optimize trial design, patient recruitment, and data analysis, fostering 

greater efficiency and precision. Moreover, within healthcare, AI-driven tools enable healthcare 

providers to make more informed decisions, tailor treatments to individual patients' needs, and 

predict disease progression with greater accuracy. Nevertheless, the incorporation of AI in 

healthcare comes with its own set of challenges and considerations. Ethical concerns 

surrounding data privacy, algorithm bias, and transparency in decision-making must be 

carefully addressed to ensure the responsible and equitable deployment of AI technologies. 

Additionally, regulatory frameworks need to evolve to keep pace with the rapid advancements in 

AI-driven healthcare solutions, striking a balance between fostering innovation and 

safeguarding patient safety. Despite these challenges, the potential benefits of AI in 

transforming healthcare delivery are profound. By harnessing the power of AI to augment 

human expertise, we can unlock new frontiers in medical research, improve clinical outcomes, 

and ultimately enhance the quality of life for patients worldwide. Moving forward, sustained 

investment in research, interdisciplinary collaboration, and stakeholder engagement will be key 

to realizing the full potential of AI in revolutionizing drug development, clinical trials, and 

healthcare.  
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