AGENESIS OF THE GALLBLADDER: A CASE REPORT

Aleksandar Zlatić1, Miodrag Djordjević1, Milan Korica3,4, Goran Petaković3,4, Radovan Veljković3,4

Congenital agenesis of the gallbladder is a rare anatomical abnormality. A 75-year-old woman was admitted with a history of intermittent pain in the right upper abdominal quadrant in the past few weeks, suggestive of biliary colic. A physical examination showed some mild tenderness in the right upper abdominal quadrant. Abdominal ultrasonography was interpreted as “images consistent with a contracted gallbladder with multiple small stones”. Multislice computerized tomography showed a common bile duct dilatation, and a mild intrahepatic dilatation of the left and right hepatic duct. Computerized tomography did not reveal any presence of gallbladder stones. Magnetic retrograde cholangiopancreatography did not show any anatomical variations and anomalies. Intraoperative ultrasonography failed to locate the gallbladder inside the liver. Intraoperative cholangiography confirmed the diagnosis of gallbladder absence, as well as absence of cystic duct and common bile duct stones. The patient recovered after surgery without any complications. A follow-up examination, one year after the surgery was without any complaints or complications.

Key words: gallbladder, gallbladder agenesis, biliary tract abnormality

Introduction

Congenital agenesis of the gallbladder (CAGB) is a rare anatomical abnormality. CAGB is usually asymptomatic; however, if symptomatic, it is accompanied with dyspepsia, nausea, vomiting or abdominal pain (1). Despite an absent gallbladder, half of the patients had symptoms resembling chronic cholecystitis or biliary colic (2). Isolated CAGB is extremely rare, with incidence ranging between 0.013 and 0.075% (3). CAGB may be associated with other congenital malformations (4, 5). Routine diagnostic methods frequently fail to diagnose gallbladder agenesis, and if not suspected, patients end up with a surgical intervention (5). However, nowadays, magnetic resonance cholangiopancreatography (MRCP) is a preoperative diagnostic method of choice for CAGB detection (1). The patient described in this case report was subjected to preoperative abdominal ultrasonography (US) which revealed gall stones. Other preoperative biliary imaging studies, such as multislice computerized tomography (MSCT) and MRCP, did not indicate any anatomic variations and anomalies. Both diagnostic imaging techniques suggested the need for a surgical intervention. The study presents a CAGB case detected by intraoperative exploration, as well as the shortcomings of the applied diagnostic and surgical methods.

Case report

A 75-year-old woman arrived to the surgical department with a history of intermittent pain for a few weeks in the right upper abdominal quadrant suggestive of biliary colic. The pain was exacerbated by eating, especially fatty foods. Recurrent episodes of pain occurred for six months. Clinically visible jaundice was found a week before admission. There was no relevant medical or family history of biliary disease.

Physical examination was in order, except for a mild tenderness in the right upper abdominal quadrant. Standard laboratory blood analyses showed atypical changes in total bilirubin - 50.1 µmol/L (normal range 1 to 20 µmol/L); serum glutamic-oxaloacetic transaminase - 276 U/L (normal range 5 to 48 U/L); alkaline phosphatase - 352 U/L (normal range 30 to 115 U/L); gamma-glutamyltransferase - 541 U/L (normal range 1 to 38 U/L); and lactate dehydrogenase - 491 U/L (normal range 120 to 246
U/L); leukocyte count - 9.1 x10^9/L (normal range 4 to 10 x10^9/L). Other laboratory parameters and urine analysis were within normal limits.

Abdominal US was interpreted as “images consistent with a contracted gallbladder with multiple small stones”. MSCT showed common bile duct dilatation (up to 18mm) and initial intrahepatic dilatation of the left and right intrahepatic duct (9 mm and 12 mm, respectively). MSCT did not show the presence of gallstones. Furthermore, MSCT showed common bile duct stones and one impacted stone in the region of the papilla of Vater. MRCP confirmed bile stones and showed no anatomic variations and anomalies. After a review of both imaging studies, the radiologist indicated the need for surgical consultation. Since the symptoms did not resolve after conservative treatment, surgery was indicated.

After insertion of a T tube, an intraoperative tube cholangiography confirmed the diagnosis of absent gallbladder, absent cystic duct and gallstones in the common bile duct (Figure 2).

The common bile duct was full of gallstones after the opening. The T tube was removed and the bile stones were washed out. After the removal of the stones from the common bile duct, the remaining digestive tract was operated with biledigestive Roux bypass. The procedure was chosen because of the suspicion of intrahepatic bile stones, bad quality of the common bile duct wall and duodenal wall, as well as bad duodenum contrast filling. The patient recovered well after surgery and was discharged on the 10th day after surgery. The follow-up visit 2 weeks after the discharge revealed no complications. The last follow-up visit one year after the surgery showed a healthy patient with no complaints and no signs of biliary system disease.

Discussion

CAGB is rare congenital anomaly characterized by the absence of the gallbladder with a normal bile duct system. CAGB is often associated with congenital abnormalities in other systems in approximately 30% (6). It can occur anytime during lifetime, most commonly at the median age of 46 years. The incidence in clinical series ranges from
0.007% to 0.027%, and in autopsy reports from 0.04% to 0.13% (6). The prevalence range is from 0.007% to 0.13% (3, 7). It is almost always an incidental finding at surgery or autopsy (1). Women to men ratio in clinical trials ranges three to one similar to other biliary diseases, but the autopsy reports suggest an equal (1:1) ratio (8).

Gallbladder agenesis is rare and occurs during embryonal development. In the fourth week of development, cranial and caudal part of the hepatic diverticulum develop from the hepatic diverticulum (9). From its larger caudal part, the liver parenchyma and intrahepatic biliary epithelium develop (4). The gallbladder and the cystic duct form from small vessels from the smaller caudal part (10). The anomalies that evolve during embryonal development may be in the form of gallbladder agenesis alone or with the absence of the cystic duct and many others congenital anomalies (1, 9, 11). The etiology of CAGB is unknown, but the reports of familial occurrence suggest a possible hereditary origin (4). Genetic factors may play an important role in the pathogenesis (12, 13).

Individuals with CAGB can be divided, according to Bennion (14), into 3 categories: 1) healthy subjects without symptoms (30% to 60%); 2) symptomatic patients (30% to 40%); and 3) patients with multiple congenital anomalies (15% to 30%). In his case report (12) in 2015, Li Ming Tang added 2 subcategories in the 3rd Bennion category: 3A) patients with lethal anomalies (15), and 3B) patients with nonlethal anomalies (5, 12).

Symptomatic patients have the symptoms suggestive of cholelithiasis (15). Most patients have right upper abdominal pain (90%), dyspepsia (30%), nausea and vomiting (66%), intolerance to fatty food and jaundice (12, 16, 17). With these patients it is difficult to determine what causes the symptoms. One of the explanations of the symptoms and clinical features is the combined biliary dyskinesia and constant pressure rise in the sphincter of Oddie. Some patients have a dilated common bile duct that takes up the function of bile storage. Finally, cholestasis arises from biliary dyskinesia and the resulting infection leads to future formation of common bile duct stones (5).

Around 40% to 60% of patients show the symptoms consistent with biliary disease: nausea, right upper abdominal pain, vomiting, bloating, and fatty food intolerance, as demonstrated in our case. In addition, 25% to 50% have choledocholithiasis with symptoms such as fever, chills, biliary colic and jaundice, as in our case presented above (18, 19).

Biliary tract diseases are diagnosed based on the usual imaging methods. Currently, these are abdominal US and MSCT. This led to a unique problem in diagnosing CAGB, since cystic duct obstruction, chronic cholecystitis and gallbladder agenesis all lead to non-visualisation of the gallbladder and cystic duct with both modalities (8, 20, 21).

Preoperative diagnosis of CAGB is extremely difficult. Patient symptoms, ultrasonographic findings suggestive of gallbladder disease, lack of other reasonable clinical diagnoses, and rarity of this entity, weigh heavily in favor of the diagnosis of biliary tract disease. Our 75-year-old patient presented the symptoms of biliary tract disease that was later determined to be caused by gallbladder agenesis. Our patient was jaundiced, with suspected common bile duct stones. Ultrasonography of the right upper abdominal quadrant showed multiple hyperechoic loci with significant shadowing in the gallbladder bed region. Ultrasonography of the same patient further demonstrated similar findings suggestive of multiple gallstones in a contracted gallbladder.

Ultrasonography, with its high sensitivity, is now the modality of choice for preoperative imaging of the gallbladder and acute biliary disease. In CAGB, intestinal loops occupy the expected location of the gallbladder causing significant shadowing, with an appearance similar to that of a contracted gallbladder filled with stones. The cystic duct, if present, may not be visualized as the result of intense shadowing from intestinal gas (18, 19, 22). These findings were present in our case, in which gallbladder agenesis could not be distinguished from chronic cholecystitis associated with choledocholithiasis, or simply a contracted gallbladder with stones (23, 24).

MSCT scanning or ERCP may raise the suspicion of CAGB in patients with questiononable sonographic findings (16). MSCT may be useful in detecting a gallbladder in an intrahepatic or abnormal location, or suggesting the diagnosis of CAGB if the gallbladder cannot be visualized (16, 22). In our case, biliary duct dilatation was noted on MSCT. Both imaging methods are useful preoperative and postoperative modalities for diagnosis confirmation and for clinical follow-up. ERCP may demonstrate an enlarged common bile duct without evidence of a cystic duct or its remnant. This leads to a misinterpretation typical for cystic duct obstruction in many biliary tract diseases (22). CAGB is rarely thought of in the differential diagnosis (25). MRCP revealed no anatomic variations and anomalies, but after a review, the radiologist indicated consultation with a hepatobiliary surgeon. MRCP is a noninvasive procedure but is readily available (8, 26). It is able to indicate the diagnosis of CAGB, as well as of other biliary anomalies and diseases (26). Hepatobiliary scintigraphy with 99mTc – IDA can now potentially detect gallbladder anomalies (19). Selective arteriography of the hepatic artery has been proposed as a diagnostic tool for CAGB (16, 19), but it is a very invasive procedure (20, 23).

During the open surgery, we discovered a winding common bile duct in the gallbladder bed (Figure 1, pointer 1). The confirmation of a truly absent gallbladder was made with T tube intraoperative cholangiography (Figure 2). Intraoperative cholangiography (16) should always be performed when gallbladder agenesis is considered, because 25% to 50% of these patients have coinciding common bile duct stones, like it was in our case (15). Intraoperative US and cholangiography can help with the diagnosis (12). In our case we performed both these procedures.

We can propose a diagnostic-therapeutic algorithm for gallbladder agenesis. If the diagnosis is
A) Patients without common bile duct stones, should undergo ERCP searching for missing coinciding bile stones and to confirm the diagnosis; the treatment is medicamentous, conservative.

B) Patients with common bile duct stones, should undergo ERCP stone extraction (if possible) with endoscopic sphincterotomy. Further treatment is medical and conservative for symptomatic patients, or no treatment for patients without symptoms. If the extraction is not possible, open surgery is recommended. Some even propose laparoscopy to confirm the diagnosis (7, 21, 27).

In the case when the diagnosis is made during laparoscopy, procedure should be aborted after searching for ectopic gallbladder (7, 27). Laparoscopic exploration depends solely on surgical skills. The confirmation is made postoperatively using the imaging methods (7, 28). Some advocate a conversion to open procedure and confirmation of the diagnosis with intraoperative US and cholangiography, if available (21).

If the diagnosis is made during open surgery, a surgeon should proceed searching for ectopic gallbladder in all known localizations with intraoperative US and cholangiography (21, 28). The special circumstances are common bile duct stones and fistulas discovered during surgery, which dictate further operative solutions (21, 27, 28, 29). Interestingly, with most symptomatic patients with pain, the pain resolves after exploratory surgical procedure (8, 13, 24).

In our case, after searching for an absent gallbladder, a bilio-digestive fistula was found and separated (Figure 1, pointer 2). T tube cholangiography confirmed an absent gallbladder and common bile duct stones. After the removal of common bile duct stones, the procedure was terminated with bilio-digestive anastomosis type side to side hepatico-jejunostomy. The reason for that was in the facts that common bile duct wall and duodenal wall were of bad quality and contrast duodenal filling was almost absent.

Conclusion

Agenesis of the gallbladder is a rare clinical entity most often diagnosed intraoperatively. Almost half of the patients have pain and symptoms of gallstones before the surgery. The other half are healthy subjects. The patients with CABG diagnosed preoperatively are referred for medical treatment, with or without potentially explorative laparoscopy. When CABG is incidentally diagnosed during laparoscopy, the procedure should be aborted and converted to laparotomy if the surgeon is not skilled enough to establish the diagnosis laparoscopically. When CABG is incidentally found during laparotomy, the procedure should continue and the diagnosis should be established. Although intraoperatively detected to have no gallbladder, most patients become asymptomatic postoperatively.

Acknowledgement: we are deeply thankful to the patient for allowing us and giving us a permission to use her information for this case report.

Informed consent: We obtained a written and signed consent from the patient to publish her information in the form of this case report. The manuscript was translated into her native language and she approved of its contents. The copy of the signed informed consent can be obtained from the Journal Editor or corresponding author.
References

29. Ayantunde AA. Symptomatic gallbladder agenesis in an elderly woman: Diagnosis and management dilemma. Surgical Practice 2006; 10(2): 84–6. [CrossRef]
Prikaz slučaja

AGENEZA ŽUČNE KESE:PRIKAZ SLUČAJA

Aleksandar Zlatić1, Miodrag Dorđević1, Milan Korica3,4, Goran Petaković3,4, Radovan Veljković3,4

1Klinika za digestivnu hirurgiju, Departman za hepatobilijarnu i hirurgiju pankreasa, Klinički centar, Niš, Srbija
2Univerzitet u Nišu, Medicinski fakultet, Niš, Srbija
3Klinika za abdominalnu, endokrinu i transplantacionu hirurgiju, Klinički centar Vojvodina, Novi Sad, Srbija
4Univerzitet u Novom Sadu, Medicinski fakultet, Novi Sad, Srbija

Kontakt: Aleksandar Zlatić
Klinika za opštu hirurgiju, Klinički centar Niš
Bul. dr Zorana Đinđića 48, 18000 NIŠ, Srbija
E-mail: drzlatic@mts.rs

Ključne reči: žučna kesa, ageneza žučne kese, abnormalnost bilijarnog trakta

This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) Licence